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A B S T R A C T

Combining multi-site data can strengthen and uncover trends, but is a task that is marred by the influence
of site-specific covariates that can bias the data and, therefore, any downstream analyses. Post-hoc multi-
site correction methods exist but have strong assumptions that often do not hold in real-world scenarios.
Algorithms should be designed in a way that can account for site-specific effects, such as those that arise
from sequence parameter choices, and in instances where generalisation fails, should be able to identify such
a failure by means of explicit uncertainty modelling. This body of work showcases such an algorithm that
can become robust to the physics of acquisition in the context of segmentation tasks while simultaneously
modelling uncertainty. We demonstrate that our method not only generalises to complete holdout datasets,
preserving segmentation quality but does so while also accounting for site-specific sequence choices, which
also allows it to perform as a harmonisation tool.
1. Introduction

The substantial soft-tissue contrast of MRI makes it the tool of choice
in a myriad of applications, especially in the field of neuroimaging.
The largely non-quantitative nature of MRI means that information is
derived from the relative contrast between tissues rather than the value
of the signal in said tissues. Different sequence and sequence parameter
choices will result in the emphasis of different tissues, and these are
deliberately chosen depending on the task at hand (Chavhan, 2016).
There is therefore a high demand for algorithms that can suitably
handle such contrast varying data. Such methods should ideally not
only be able to perform adequately on data arising from multiple sites
and/ or acquired using multiple protocols, but they should also do so
while directly accounting for the biases that arise from these variations.
This is known as harmonisation and allows comparisons to be drawn
as if all data had been acquired in the same fashion from a single site.

2. Related works

2.1. Improving model generalisability

Many techniques have been proposed for improving generalisabil-
ity. Probabilistic generative models (Ashburner and Friston, 2005)
are widespread in their use but are limited by their strict label in-
tensity distributions and underlying assumptions. Multi-atlas fusion
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methods (Sabuncu et al., 2010) are likewise popular but suffer from
prolonged processing times owing to their registration-based nature.

Convolutional neural networks (CNNs) have achieved state-of-the-
art results in a multiplicity of medical imaging tasks including image-
to-image translation, segmentation, and classification (Yu et al., 2021).
CNNs, however, are susceptible to overfitting to the data regime in
which they were trained and evaluated, resulting in poor generalising
performance, and limiting their use for clinical applications (Yasaka
and Abe, 2018; Karani et al., 2018). This is due to the fact that the
data used for training may not exhibit overlapping characteristics with
the holdout set, the set of data that may have arisen, for example, from
a different site that may have employed a different scanning protocol.
This can be ameliorated with a robust augmentation scheme, but
standard augmentation pipelines cannot replicate contrast differences
between regions without further modelling, leading to inconsistent
biomarker extraction (Shinohara et al., 2017).

Ideally, CNNs would be trained on contrast-rich, manually anno-
tated, datasets to maximise their generalisability, as this exposes them
to a wide variety of visual features and patterns which should help
them to develop robust and flexible representations of the data, making
them more resilient to the variability that arises from, for example,
poor contrast, noise, or artefacts. In practice however such datasets are
scarce, owing to the difficulty in aggregating multi-site data and to how
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time-consuming and costly it can be to obtain annotations (Hosny et al.,
2018). As a result, we must look towards methodological improvements
that can tackle this contrast consistency conundrum.

Zhang et al. (2020) train networks with a robust augmentation
scheme that includes image sharpening, blurring, the addition of noise,
brightness and contrast adjustments, affine transforms, and free-form
deformation. They show that models trained in this fashion are more
able to aptly generalise to unseen domains, owing to their augmenta-
tion scheme capturing most potential sources of image variability.

Pham et al. (2020) designed a method whereby contrast robustness
is attained by training a segmentation-synthesis model. A standard
segmentation network is trained, which is then used to segment an
image of unseen contrast. This (initially sub-optimal) segmentation is
then used to train a synthesis network that is applied in combination
with the observed contrast images’ labels to regenerate these contrast
images, which in turn serve to retrain the segmentation network, and
the process is repeated. By sampling intensities from Gaussian mixture
models for different regions in ATLAS sampled label maps, images of
unrealistic, but extreme contrast variations can be generated, which
forms the basis for SynthSeg (Billot et al., 2021). When paired with
a robust augmentation scheme very similar to that of Zhang et al.
(2020), it is shown that this methodology generalises well to images
of different modalities without requiring any fine-tuning. PSACNN (Jog
et al., 2019) leverages approximate static equation models in conjunc-
tion with pseudo-physics parameter estimation to generate synthetic
images which are used to train networks that will generalise to a
target dataset. Varadarajan et al. (2021) propose a means of generating
quantitative MR maps using a small set of multi-echo FLASH images
in a manner that is robust to the input acquisition parameters. Cru-
cially, these generalisability-related methods do not explicitly account
for the biases introduced by the choice of imaging parameters. To
elaborate, what all these generalisability methods lack is the ability
to explicitly account for the biases (e.g.: contrast variations) that are
introduced as a result of variables relating to the physics of image
acquisition, namely the choice of sequence and sequence parameters.
Such models will perform their task according to the visual properties
of the image alone, as they do not have any accompanying information
relating to the acquisition, nor are they trained in a fashion that might
convey this information implicitly. This leads to a discussion on data
harmonisation.

2.2. Harmonisation

It is important to acknowledge works that approach the problem of
multi-site harmonisation. For example, ComBat is a Bayesian method
that models site effects both additively and multiplicatively, allow-
ing data harmonisation while preserving biological variability (John-
son et al., 2007). Harmonisation has also been taken on with Cycle-
GANs (Zhu et al., 2017; Zhao et al., 2019) and domain adaptation
approaches (Dinsdale et al., 2020).

Even when designing models that exhibit greater generalisability,
there will still be instances of poorer performance, or failure. In-
corporating uncertainty estimation into our algorithms allows for an
additional degree of insight and safety to be attached to every predic-
tion, and because of these boons, it has featured increasingly in deep
learning works, including medical imaging (Klaser et al., 2021; Tanno
et al., 2021; Graham et al., 2020; Horner et al., 2019). Acquisition
parameters change tissue contrast and noise, to such an extent where
certain choices of parameters can result in very uncertain segmenta-
tions, due to the lack of contrast. We can therefore leverage uncertainty
estimation to measure the model’s ability to perform a task as a function
of the acquisition parameters. We choose to model both epistemic
and heteroscedastic aleatoric uncertainty (Kendall and Gal, 2017).
Epistemic uncertainty relates to the uncertainty in the model, while
heteroscedastic aleatoric uncertainty relates to the uncertainty intrinsic
2

to the data.
In our previous work (Borges et al., 2020), we proposed a method
that explicitly models the physics of the acquisition to design networks
that can become invariant to the process by which they were acquired.
This method made use of multiparametric MR maps (MPMs), which
contain voxelwise quantitative MR parameter information combined
with MR sequence simulations to generate images of various contrasts
which are used to train networks privy to the sequence parameters
used to generate the synthetic images. We also put forward a Physics
Gold Standard (PGS) label creation model to generate the tissue seg-
mentations used to train these networks. We described the PGS as
a true anatomical ground truth, as it is derived directly from the
quantitative MPMs, and therefore not affected by the biases that a
segmentation created from a qualitative image would have introduced.
The work showed that networks trained in this fashion can achieve
greater segmentation consistencies across a wide range of sequence
parameters without incurring detriments to the segmentation quality.
This work did not, however, offer out-of-distribution analyses, nor was
this work validated extensively on real, external datasets.

2.3. Contributions

In this work, we address these limitations and introduce several im-
provements that significantly contribute towards acquisition-
invariance, namely, the translation of the proposed simulation frame-
work into a full dynamic data augmentation pipeline, the introduction
of a contrast stratification loss, and the modelling of uncertainty.
We hypothesise that these modifications should allow for a greater
extrication of the physics of the acquisition and the underlying anatomy
and a greater ability to extrapolate to unknown regions of contrast and
parameter space. This is evaluated by means of analysing segmentation
consistency across in and out of distribution samples within subjects, as
well as how the uncertainty-derived volumetric uncertainties differ be-
tween methods. Furthermore, we investigate how our method performs
on a harmonisation task consisting of real multi-site data by analysing
the consistency of predicted longitudinal tissue trends across sites.

With this work, we sought to design a method that can (1) generalise
aptly to varying contrasts while (2) implicitly harmonising results (due
to its knowledge of the physics of the acquisition process) and (3)
provide uncertainty quantification that can be directly tied to the
choice of protocol parameters. Methods such as PSACNN and SynthSeg
address the problem of generalisability without explicitly addressing
harmonisation. The various outlined harmonisation methods either
harmonise post-hoc (ComBat) or do so in a fashion that is specific to
the data at hand (Zhu et al., 2017; Zhao et al., 2019; Dinsdale et al.,
2020) (i.e., The sources of variability are not generally modelled). Our
method fulfils all three criteria and is thoroughly validated on real
multi-protocol and multi-site data.

3. Methods

3.1. Framework background

In our original work (Borges et al., 2020), we proposed and im-
plemented an implicitly harmonising physics-informed segmentation
framework trained with synthetic data. Images were generated using
a simple static-equation-based physics forward model that employed
MPMs. Our labels, which we referred to as a Physics Gold Standard
(PGS) were created by sourcing literature values for the 𝑅1 values
for the tissues of interest, grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) and fitting a Gaussian mixture model for each
on the quantitative values in the MPMs, the very same ones used to
generate our images, thus giving us paired data to train with. Our
architecture of choice was a modified U-Net, which, alongside our
simulated images, accepted the physics parameters used to generate
said images into a separate branch that merged into the first and
penultimate set of convolutional layers. We showed that while the
network boasted harmonisation abilities in some instances and was able
to perform well in a data-bridging setting, it disappointingly did not

always out-compete a complete baseline.
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3.2. Major methodological changes overview

Having outlined the foundational method, we summarise the pro-
posed methodological additions as follows:

Simulation augmentation: By casting the simulation pipeline
as an augmentation layer rather than keeping it as a pre-
processing step, it allows for images to be generated during
training on demand, with a greater exploration of contrast space.
Batch stratification and loss: By simulating multiple contrasts
for a single subject (who will have a single, consistent PGS
ground truth), combining them in a batch, and enforcing that
network features for all contrasts are as close as possible by
incorporating a regression-type stratification loss the network is
given an explicit harmonisation objective during training.
Uncertainty quantification: By incorporating both epistemic
and aleatoric uncertainty modelling into the network and distill-
ing volumetric bounds for output segmentations, an additional
level of safety and insight is granted to the model.

3.3. Section summary and introduction

We cover in this section the various methodological improvements
to the physics-informed segmentation method introduced in our origi-
nal work (Borges et al., 2020).

We begin by covering the architecture under Network architec-
ture, followed by the introduction of changes to the original training
paradigm, featuring a new loss in Stratification and batch homogeneity ;
changes to the simulation portion of our pipeline in Casting simulation as
an augmentation layer, and lastly a delineation of uncertainty modelling
and how we incorporate it into our training and validation scheme
features in Uncertainty modelling.

As in our previous work (Borges et al., 2020), we continue using the
PGS, by sourcing literature values for the 𝑅1 values for the tissues of
interest, grey matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) and fitting a Gaussian mixture model for each on the quantitative
values in the MPMs. Namely, the normal distribution for GM is defined
as  (0.683, 0.0802), for WM as  (1.036, 0.0802) (Weiskopf et al., 2013),
and for CSF as  (0.240, 0.0302) (Rooney et al., 2007), in units of
seconds.

The Physics Gold Standard exhibits interesting properties typically
absent from manual annotations. Firstly, in assigning voxels to tissues
according to a GMM, the resultant labels are not categorical and more
accurately reflect the continuous nature of tissue boundaries. In the
same vein, certain structures, such as the Thalamus, Amygdala, Caudate
Nucleus (which cannot be fully labelled as grey matter), and the motor
cortex (which is fairly myelinated compared to other cortical areas)
more obviously have this property reflected in our Physics Gold Standard
maps, which again would go unnoticed in categorical labelling.

All volumes are skull-stripped to ensure no further extra-cranial
tissue considerations are required. For this, we employed Geodesic
Information Flows (GIF) (Cardoso et al., 2015), treating the total in-
ternal volume outputs (TIV) as an intracranial mask. GIF requires 𝑇1
contrasted images, and to this end, we simulated one MPRAGE image
for each subject with a TI of 900 ms (A value within the theoretical
optimal range (Wang et al., 2014)) in order to obtain intracranial masks
for all subjects. There will be a bias towards the type of contrast chosen
to obtain the intracranial mask. However, in practice, we verify that the
difference between masks across a wide inversion time range is small,
namely less than 0.5% total volume difference across a 600 to 1200 ms
inversion time simulation range.

We propose improvements to our previous methodology, further
validating our method on out-of-distribution samples aided by
uncertainty-derived errors and evaluating our method on a multi-site
harmonisation task to assess generalisability to a real, multi-contrast
dataset.
3

3.4. Network architecture

We adopt the nn-UNet architecture (Isensee et al., 2018) owing to
its widespread adoption for segmentation tasks in literature.

The network consists of four contracting blocks, a bottleneck layer,
four expansive blocks, and an output block. Each contracting block
consists of a kernel size three 3D convolution and leakyrelu activation
pairs. The bottleneck layer and expansive blocks are each made up
of the same pair of operations followed by a non-parametric trilinear
upsampling layer; see Fig. 1.

As in our original work, the acquisition parameters used to generate
the images in any one batch are passed via two fully connected layers
before tiling the output of said layers, both following the second con-
volutional layer and following the second to last convolutional layer.
We posit that knowledge of the physics can enrich the features learned
in the encoding part of the network instead of constraining the physics
knowledge to the end layers of the network alone.

MONAI (Consortium", 2020), TorchIO (Pérez-García et al., 2020),
and PyTorch are used for all implementations.

3.5. Stratification and batch homogeneity

Intra-subject segmentation volume consistencies across multiple
contrasts can be considered as a surrogate for acquisition parameter
invariance. We propose some changes to the original methodology to
further enforce this consistency. In particular, we leverage the fact
that, for a single subject, the PGS segmentations are constant for every
simulated realisation of the images (regardless of the choice of sequence
and sequence parameters used to simulate images for that subject),
as the underlying biology is unchanged. If a batch only contains
realisations from a single subject, and the patch location is identical for
all samples in the batch, then the labels for this batch are also identical.
If using single subject batches, we can therefore add a constraint to the
batch feature maps to enforce similarity between them. This comes in
the form of a stratification (𝐿2) loss (Eq. (1) below) over all the feature
maps in the penultimate layer of the network, which is added to the
standard cross-entropy loss to form our final proposed loss function
(Eq. (2) below):

𝐿𝑆𝑡𝑟𝑎𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = − 1
𝐶𝑛
2

𝑛
∑

𝑎=1,𝑏=2
𝑎≠𝑏

(𝐹𝑎 − 𝐹𝑏)2 (1)

𝑇 𝑜𝑡𝑎𝑙 = −
𝑛
∑

𝑖=1
𝑐𝑖𝑙𝑜𝑔(𝑝𝑖) −

1
𝐶𝑛
2

𝑛
∑

𝑎=1,𝑏=2
𝑎≠𝑏

(𝐹𝑎 − 𝐹𝑏)2 (2)

here 𝐶𝑛
2 is the binomial coefficient, denoting the total number of

nique pairs of combinations of feature maps in the batch, ∑ 𝑎=1,𝑏=2
𝑎≠𝑏

𝑛

epresents a sum over all possible unique pairs, and 𝐹 denotes a
ingle feature map. E.g. For three feature maps (A, B, and C), an 𝐿2
s calculated between feature maps A and B, feature maps A and C,
nd feature maps B and C, where each of these pairings refers to one
uch unique combination (Note that feature maps are never compared
gainst themselves).

The first term of the second equation denotes the standard cross-
ntropy loss, with 𝑐𝑖 as the voxelwise ground truth label and 𝑝𝑖 as

the probabilistic voxelwise network prediction (i.e., the Softmax of the
output network logits).

We term this loss stratification because its inclusion forces features
to be the same, therefore stratifying style and content.

3.6. Casting simulation as an augmentation layer

The static equation simulation approach follows that described
in Jog et al. (2015); specifically, we make use of the MPRAGE and SPGR
equations described there. These approximate the signal, per voxel,
given its intrinsic MR parameters (𝑇 , 𝑇 ∗, 𝑃𝐷) and the chosen sequence
1 2
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Fig. 1. The 3D physics-informed architecture. The numbers below the blocks denote the number of channels in the feature maps following the convolution it is associated with.
The output features of the fully connected layers are tiled to be compatible in size with the main network convolutional features they are concatenated to, as shown in the top
right.
parameters, which depend on the specific sequence being modelled.
The absence of a temporal component is why they are termed static.
The static signal for voxel 𝑥 for an MPRAGE sequence is:

𝑏𝑀 (𝑥) = 𝐺𝑆𝑃𝐷(𝑥)

(

1 − 2𝑒
−𝑇 𝐼
𝑇1(𝑥)

1 + 𝑒
−(𝑇 𝐼+𝑇𝐷+𝜏)

𝑇1(𝑥)

)

, (3)

Accordingly, for an SPGR sequence:

𝑏𝑆 (𝑥) = 𝐺𝑆𝑃𝐷(𝑥)𝑠𝑖𝑛𝜃 1 − 𝑒
− 𝑇𝑅

𝑇1(𝑥)

1 − cos 𝜃𝑒
− 𝑇𝑅

𝑇1(𝑥)

𝑒
− 𝑇𝐸

𝑇 ∗2 (𝑥) , (4)

For the sequence-specific parameters, 𝐺𝑆 denotes the scanner gain,
𝑇 𝐼 is time between the inversion recovery pulse and the first RF
readout pulse, 𝑇𝑅 the repetition time, 𝑇𝐸 the echo time, 𝜏 the echo
spacing time, 𝑇𝐷 the delay time, and 𝜃 the flip angle. 𝐺𝑆 is a mul-
tiplicative factor that is assumed to be constant for all voxels, so is
chosen to remain constant for all simulations. Note that the proposed
static equation model is an approximation of the imaging process which
ignores the local MRI dynamics, but allows for sufficiently-realistic and
fast simulations necessary for CNN model training.

In our earlier work, (Borges et al., 2020), the synthetic image cre-
ation process is part of pre-processing; a set number are pre-generated
according to a set parameter interval and is then used for training. We
propose casting the static equation simulation process as an augmen-
tation. In this fashion, the network takes in a protocol type, a range
of relevant protocol parameters sampled, and MPMs. Per iteration, a
single MPM is selected, and by sampling from the range of protocol
parameters 𝑁 times, 𝑁 simulated volumes are generated to make up
the batch. This is in accordance with our aforementioned batch strat-
ification modification, which therefore means that the selected patch
for each of these samples resides in the exact same space. It is worth
4

noting here that the augmentation layer feature does partially fall under
the realm of data handling rather than being a purely methodological
addition. Given that its inclusion is intrinsically tied to the passing of
physics information and the batch stratification feature, however, we
see it fit to include it under the same umbrella for the purposes of this
work.

This eliminates the need for having to prepare the data in advance
and allows for a greater dynamic exploration of the physics parameter
space. Fig. 2 shows the training pipeline, featuring all aforementioned
modifications.

In addition, we employ the standard MR-related training time data
augmentations employed in the original work (Borges et al., 2020),
namely bias field and noise.

3.7. Uncertainty modelling

Data acquired with different parameters and devices results in
differing levels of image contrast and noise, thus affecting a model’s
ability to segment a target region of interest; the model’s uncertainty
can characterise this effect. Modelling uncertainty allows us to ob-
tain volumetric error bounds on our network outputs, which we can
use to compare methods and model performance with in and out of
distribution samples.

3.7.1. Epistemic uncertainty
Epistemic uncertainty relates to model inadequacies, either due to

limited data and/ or limited model capacity. For this reason, it is not
uncommon to refer to it as a ‘‘knowable’’ uncertainty, as greater data
availability and a more complex model serve to minimise epistemic
uncertainty.
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Fig. 2. The training pipeline with proposed new additions of single subject batch stratification and accompanying 𝐿2 feature maps loss, and training time image simulation.
We choose test-time dropout with Monte Carlo sampling to model
epistemic uncertainty. At training time, neurons are randomly ignored
at some rate, 𝑀𝐶𝑟, every iteration. At test time, given any one input,
multiple segmentations can be produced by maintaining this random
neuron activation behaviour, essentially sampling from a series of
sub-nets, which approximates Bayesian posterior sampling (Gal and
Ghahramani, 2015).

For a given input, the epistemic uncertainty can then be determined
by calculating the degree of variation that exists within its Monte Carlo
segmentation samples. We are interested in obtaining a quantitative
measure of the epistemic uncertainty, so we look at the variation in the
segmentation volumes (obtained by summing the voxel values for each
tissue class, per sample) rather than carrying out a voxel-wise analysis.

The dropout rate, 𝑀𝐶𝑟, is set to 50% in all layers to maximise the
variance of those layers’ outputs, except for the first layer, where we
opt for a value of 5% to not penalise the learning of low-level image
features too harshly (Eaton-Rosen et al., 2018). No changes to the loss
function are incurred as a result of employing Monte Carlo dropout.

3.7.2. Aleatoric uncertainty
Aleatoric uncertainty relates to the irreducible noise present in the

data, and does not decrease in the limit larger amounts of data, or
greater modelling complexity. The heteroscedastic sub-category more
specifically refers to aleatoric uncertainty that varies across inputs. MR
images are not equally noisy, making heteroscedastic, rather than ho-
moscedastic, aleatoric uncertainty the most appropriate to model. Note
that noise in this instance does not solely refer to the random signal
variations present in images, but also to blurry boundaries between
tissues.

Heteroscedastic aleatoric uncertainty is explicitly modelled by
means of loss attenuation as described by Kendall and Gal (2017). Our
model incurs architectural and loss changes as a result of this. This
new formulation begins by casting the network outputs as a linear sum
between its task logits and noise sampled from a zero-meaned normal
distribution with a standard deviation equal to voxelwise heteroscedas-
tic uncertainty predictions. Propagating this to the cross-entropy loss,
we arrive at a new formulation:

Let us begin by defining some starting variables. 𝑓𝑊
𝑖 represents

the task logits (prior to Softmax) for the 𝑖th voxel. 𝜖𝑖,𝑡 represents a
sample taken from a zero-meaned normal distribution with a standard
deviation 𝜎𝑊
5

𝑖

�̂�𝑖,𝑡 is the result of summing 𝑓𝑊
𝑖 , the voxelwise task logits, with

samples taken from a normal distribution with mean zero and standard
deviation equal to the voxelwise network prediction of 𝜎𝑊𝑖 .

�̂�𝑖,𝑡 is the result of summing 𝑓𝑊
𝑖 to this stochastic sample �̂�𝑖,𝑡.

Because 𝜂 is drawn randomly from a distribution, it is parameterised
by 𝑡, which exists to showcase how this process is non-deterministic,
as opposed to 𝑓𝑊

𝑖 , which (in a non-dropout setting) is, conversely,
deterministic.

�̂�𝒊,𝒕 = 𝒇𝑾
𝒊 + 𝝐𝒕, 𝝐𝒕 ∼  (𝟎, (𝝈𝑾

𝒊 )𝟐) (5)

Having defined these variables, we can move to define our loss, which
is a simple Cross-Entropy loss taken over all voxels 𝒊 and samples 𝑻 . 𝒄𝒊
represents the ground truth voxelwise categorical labels, while 𝑺𝑴 is
the Softmax operator.

 = −
∑

𝒊

𝟏
𝑻

∑

𝒕
𝒄𝒊𝒍𝒐𝒈(𝑺𝑴(�̂�𝒊,𝒕)) (6)

By expanding the Softmax operation, we arrive at the following formu-
lation, where, for the denominator of the final expression, the sum is
taken over classes, denoted by 𝒄′:

 = −
∑

𝒊

𝟏
𝑻

∑

𝒕
𝒄𝒊𝒍𝒐𝒈

(

𝒆�̂�𝒊,𝒕
∑

𝒄′ 𝒆
�̂�𝒊,𝒕,𝒄′

)

(7)

Lastly, a few final rearrangements lead us to the final form of our loss:

 = −
∑

𝒊

𝟏
𝑻

∑

𝒕
𝒄𝒊(𝒍𝒐𝒈(𝒆�̂�𝒊,𝒕 ) − 𝒍𝒐𝒈(

∑

𝒄′
𝒆�̂�𝒊,𝒕,𝒄′ )) (8)

 =
∑

𝒊
𝒍𝒐𝒈 𝟏

𝑻
∑

𝒕
𝒆𝒙𝒑(𝒄𝒊(−�̂�𝒊,𝒕 + 𝒍𝒐𝒈

∑

𝒄′
𝒆�̂�𝒊,𝒕,𝒄′ )) (9)

As previously mentioned, the voxelwise, classwise, heteroscedastic
standard deviations, 𝜎𝑊𝑖 , are predicted by our network in addition to
the standard task logits, 𝑓𝑊

𝑖 . To accomplish this, we concatenate an
additional branch to our architecture immediately following the final
upsampling layer. It follows the same architectural structure as the
original segmentation branch, with the addition of a softplus activation
layer after the last convolutional layer to ensure that all predicted
standard deviations are positive.

Under this new formulation, the network is encouraged to assign a
high uncertainty to harder-to-segment regions and likewise inclined to
assign a low uncertainty to those regions it finds easier to classify.
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Fig. 3. Uncertainty quantification illustrated. The green line in the graph represents the cumulative aggregated percentile volumes, while the red line depicts the cumulative
uniform distribution that we aim to fit the former to. This process is repeated for every subject.
By modelling heteroscedastic uncertainty in this fashion, we can
generate multiple segmentations per input, as for every forward pass
through the network, we obtain a new sample from the noise distri-
bution, which is summed with the task logits to produce a new output,
where differences are presumed to arise only due to the heteroscedastic
uncertainty. As with the epistemic uncertainty quantification, we focus
on volumetric differences across the heteroscedastic samples.

3.7.3. Uncertainty quantification
To translate sampled segmentations obtained from epistemic and/

or aleatoric modelling into informative quantitative errors, we follow
the steps outlined in Eaton-Rosen et al. (2018). For an input image, 𝑥𝑖,
we perform 𝑇 forward passes through our model with dropout enabled,
resulting in 𝑇 predictions per voxel 𝑣, per class 𝑛, which we denote as
𝑦𝑖𝑡𝑣𝑛 for 𝑛 ∈ [1,… , 𝑁], 𝑣 ∈ [1,… , 𝑉 ], and 𝑡 ∈ [1,… , 𝑇 ]. We then sort
each individual voxel across these 𝑇 Monte Carlo samples according
to percentile value, 𝑝, for 𝑝 ∈ [0,… , 100∕𝑇 ], essentially constructing 𝑇
sets of predictions sorted according to voxelwise percentiles, which we
denote as 𝜆𝑝. We then sum the values across all the voxels, which results
in a percentile volume, 𝑉𝑝 =

∑𝑉
𝑣=1 𝜆𝑣𝑝, for each percentile prediction.

From this, we can construct a cumulative distribution of percentile
volumes, which we seek to calibrate. This final calibration step is
performed by fitting this cumulative distribution to the cumulative dis-
tribution of a uniform distribution. This aims to ensure that confidence
intervals reliably contain the expected ratio of ground truth values.
The parameters of this fit are calculated on the validation set alone,
not to introduce any biases at test time. This quantification process is
showcased in Fig. 3.

4. Experiments and results

4.1. Section summary

We preface experiment descriptions and results in Data and experi-
mental details by describing our data, our initial simulation setup, and
outlining how we choose to present our findings. This is followed in
6

Annealing study: Robustness and quality analysis by an outline of our
first major experiment, namely an ablation study of the methodolog-
ical additions described in the previous section and resulting find-
ings. Uncertainty measures and volumetric bounds outlines the first set
of uncertainty-related experiments. Subsection Physics-driven multi-site
harmonisation contains our primary set of experiments and results,
those relating to harmonisation. We first delineate the networks trained
and baseline methods, followed by preliminary analyses that investi-
gate basic segmentation quality and biological covariance preservation.
We subsequently discuss the main harmonisation-related findings and
conduct a scanner-type focused performance analysis.

4.2. Data and experimental details

4.2.1. Data
Our data consists of quantitative multi-parametric volumes from

27 subjects originating from a young onset Alzheimer disease dataset
(YOAD) (Foulkes et al., 2016; Slattery, 2019). Each volume is 4-
dimensional, 1 mm isotropic, matrix size 181 × 217 × 181 × 4. The
quantitative MR parameters span the fourth dimension. These param-
eters consist of 𝑅1, the longitudinal magnetisation relaxation rate, 𝑅∗

2,
the effective transverse magnetisation relaxation rate, proton density
(PD), and magnetisation transfer (MT). MT does not feature in the
static equation models we employ, so we do not make use of the MT
maps. MPM creation details are described in Helms et al. (2008). For all
experiments, we define a train/validation/test split of 18/4/5 subjects,
trained over five folds.

4.2.2. Network hyperparameters and training details
Regarding the U-Net component of the network, following the first

convolution, we have 30 feature maps at the highest resolution, which
are doubled following every contracting block, arriving at 240 at the
bottleneck layer. In the decoding branch, the number of feature maps
is halved following every expansive block, arriving at 30 immediately
prior to the output layer, which reduces this number to 𝐶, where 𝐶
corresponds to the number of classes. The physics branch takes in a
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vector of size four (for MPRAGE, constituting TR, TI, 𝑒−𝑇𝑅, 𝑒−𝑇 𝐼 ) or
six (for SPGR, constituting TR, TE, FA, 𝑒−𝑇𝑅, 𝑒−𝑇 𝐼 , 𝑠𝑖𝑛(𝐹𝐴)) parameters
and is made up of two fully connected layers of length 40.

Networks are trained with a batch size of four, consisting of 3D
patches, each of size 1283, uniformly sampled from the synthetically
generated images. Networks are trained until convergence, which is
met when seven epochs with no improvement in the validation metric
have passed. We define the validation metric as the sum of Dice score
and volumetric coefficient of variation (calculated per tissue, across
images in the batch), averaged across the three tissues.

4.2.3. Simulation sequence details
We seek to evaluate how our additions compare with the original

work, and therefore we train our networks using simulated images
bearing the same parameter ranges and sequences explored therein. For
MPRAGE, this entails TI = [600–1200] ms; for SPGR, this entails TR
= [15–100] ms, TE = [4–10] ms, FA = [15–75] degrees. Physics Gold
Standard labels are generated using the same approach, with the same
parameters chosen for the Gaussian mixture models of each tissue.

4.2.4. Results presentation
When comparing models and solutions, statistical significance is

ascertained via signed-rank Wilcoxon tests carried out independently
on the different metrics. Values in bold denote the statistically best
models. In instances where models may outperform baselines but are
not statistically significantly different from each other, we bold both.

4.3. Annealing study: Robustness and quality analysis

We frame this comparative work as an annealing study, whereby
we evaluate how model performance changes with each subsequent
contribution, verifying their contributions to the model’s efficacy. To
this end, we train a series of networks: Baseline, a vanilla nn-UNet that
takes as input pre-generated data (as in the original work); Phys-Base,
the physics-informed style network as proposed by the original work,
also taking as input pre-generated data; Aug, a Baseline network with
the shift from using pre-simulated images to training with our proposed
physics augmentation pipeline; Strat, a Baseline model with the added
stratification loss across the feature maps in the mini-batch; Phys-Strat,
equivalent to Phys-Base with the added stratification component, also
trained with pre-generated data; and Phys-Strat-Aug, equivalent to Phys-
Strat but trained with the augmentation component. We highlight here
that our use of physics-informed denotes models that are specifically fed
the sequence parameters in addition to simulated images.

Experiments containing Phys are trained with the physics-informed
architecture, those containing Strat are trained with the added stratifi-
cation loss across feature maps in the mini-batch, and those containing
Aug shift from using pre-simulated images to training with our pro-
posed physics augmentation pipeline, taking as input, therefore, 4D
MPMs. Combining these terms involves combining these features, and
as they operate independently, it does not involve any further modi-
fications. Fig. 4 shows the features that each of the eight experiments
contains.

As in the original work, 121 images are simulated per sequence for
models trained with pre-generated data. To re-iterate, for MPRAGE,
equally spaced TI intervals between [600–1200] are chosen for image
creation, while for SPGR, the parameters are sampled randomly from
the space of TR = [15–100] ms, FA = [15–75] degrees, and TE = [4–10]
ms. These parameter ranges are akin to those explored in the original
work. Performance is evaluated in terms of volume consistency (using
the coefficient of variation, CoV), Dice scores, and Hausdorff distances.
For the Aug models, images were simulated using parameters sourced
uniformly between the aforementioned ranges.

We posit that a truly physics-informed network should be able to
adequately extrapolate to images generated with sequence parameter
values that lie outside the range seen during training. To this end,
7

Fig. 4. Eight combinations of annealing experiments.

we additionally validate our models on such out-of-distribution (OoD)
samples. For MPRAGE, this involves extending the TI range to [100–
2000] ms, and for SPGR, TR is expanded to [10–200] ms while TE is
expanded to [2–20] ms, and FA is expanded to [5–90] degrees. The
same performance metrics are employed to assess performance.

Hausdorff distances, Dice scores and CoV for each experiment and
tissue are shown in Tables 1–3. CoV results showcase incremental im-
provements most evidently, with the lowest CoVs belonging in almost
all instances to experiments that include the stratification compo-
nent, which is congruent with expectations, as it is an explicit vol-
ume consistency-related constraint. Hausdorff distances paint a similar
picture, with the best performances exhibited by Phys-Strat-Aug and
Strat-Aug.

We feature comparative qualitative segmentation results in Fig. 5
to showcase how consonant Phys-Strat-Aug ’s segmentations are across
varying contrasts, compared to Baseline. We circle specific regions
where this is particularly evident.

4.4. Uncertainty measures and volumetric bounds

We use the annealing study performances to inform network se-
lection for our uncertainty investigation. Phys-Strat-Aug’s performance
stands out as the best of the models, so we, therefore, train two sets of
uncertainty-aware networks; an epistemic Phys-Strat-Aug network, an
epistemic Baseline network, a heteroscedastic Phys-Strat-Aug network,
and a heteroscedastic Baseline network. The intent is to ascertain how
uncertainties deviate for a physics-informed network compared to a
physics-agnostic counterpart with respect to in and out of distribution
samples.

To extract and calculate volumetric uncertainties we begin by sam-
pling 50 segmentations from our epistemic networks, and 50 segmenta-
tions from our heteroscedastic networks, for in and out of distribution
samples for MPRAGE and SPGR. Initial comparisons between networks
made it apparent that the variance originating from heteroscedastic
uncertainty was dwarfed by that originating from its epistemic coun-
terpart by several orders of magnitude. Eaton-Rosen et al. (2018) also
made this observation in their work that investigated the translation
of uncertainty into quantitative error bounds, finding that the het-
eroscedastic contribution was negligible. As a result, our quantitative
error analyses will henceforth focus solely on epistemic uncertainty.
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Table 1
Mean directed Hausdorff distances for Baseline, Phys-Base, Aug, Strat, Phys-Strat, Phys-Aug, Strat-Aug, and Phys-Strat-Aug on segmentation task,
across inference subjects. All Hausdorff distances are calculated against a Physics Gold Standard. Standard deviations quoted in brackets. Bold
values represent statistically best performances.

Experiments Sequence Hausdorff distances

MPRAGE SPGR

GM WM GM WM

IoD OoD IoD OoD IoD OoD IoD OoD

Baseline 9.02 13.44 10.48 15.36 8.30 22.43 7.81 27.79
(1.70) (1.58) (3.00) (3.21) (0.65) (7.56) (0.28) (4.98)

Phys-Base 4.86 5.45 5.95 6.19 8.73 34.03 8.16 31.35
(0.90) (0.82) (0.86) (0.70) (1.46) (7.71) (0.59) (7.33)

Aug 6.46 6.65 6.08 6.19 7.02 37.39 19.08 43.64
(2.72) (2.59) (0.45) (0.45) (2.58) (19.95) (7.15) (46.25)

Strat 6.13 6.24 6.95 6.96 4.99 7.21 5.81 8.02
(0.92) (0.90) (0.003) (0.69) (2.48) (2.79) (1.21) (3.48)

Phys-Strat 5.67 5.66 5.40 5.39 6.02 6.77 6.09 7.53
(1.54) (1.44) (0.77) (0.78) (1.43) (3.04) (0.90) (4.39)

Phys-Aug 5.74 6.13 6.74 6.85 7.32 11.08 8.67 34.99
(1.39) (1.56) (1.20) (1.13) (2.63) (9.03) (1.64) (14.01)

Strat-Aug 5.85 5.96 4.71 4.79 5.27 4.19 4.55 4.66
(3.02) (2.98) (0.93) (0.76) (1.02) (0.77) (0.92) (0.87)

Phys-Strat-Aug 3.17 3.20 3.52 3.59 4.98 6.16 6.00 6.13
(0.23) (0.21) (0.81) (0.72) (1.08) (0.89) (0.55) (0.45)
Table 2
Mean Dice scores for Baseline, Phys-Base, Aug, Strat, Phys-Strat, Phys-Aug, Strat-Aug, and Phys-Strat-Aug on segmentation task, across inference
subjects. All Dice scores are calculated against a Physics Gold Standard. Standard deviations quoted in brackets. Bold values represent statistically
best performances.

Experiments Sequence Dice scores

MPRAGE SPGR

GM WM GM WM

IoD OoD IoD OoD IoD OoD IoD OoD

Baseline 0.966 0.956 0.953 0.934 0.878 0.872 0.893 0.873
(0.005) (0.006) (0.002) (0.002) (0.021) (0.008) (0.023) (0.011)

Phys-Base 0.971 0.964 0.964 0.959 0.911 0.872 0.912 0.880
(0.007) (0.009) (0.008) (0.011) (0.020) (0.050) (0.021) (0.092)

Aug 0.967 0.964 0.960 0.958 0.916 0.892 0.900 0.874
(0.004) (0.004) (0.002) (0.002) (0.019) (0.025) (0.004) (0.035)

Strat 0.958 0.957 0.946 0.945 0.928 0.901 0.911 0.877
(0.005) (0.005) (0.003) (0.003) (0.002) (0.010) (0.005) (0.009)

Phys-Strat 0.970 0.969 0.958 0.957 0.929 0.911 0.922 0.894
(0.005) (0.005) (0.004) (0.005) (0.015) (0.011) (0.021) (0.040)

Phys-Aug 0.968 0.966 0.960 0.958 0.930 0.893 0.919 0.874
(0.003) (0.003) (0.003) (0.003) (0.002) (0.004) (0.004) (0.003)

Strat-Aug 0.960 0.959 0.951 0.960 0.936 0.920 0.935 0.897
(0.004) (0.003) (0.003) (0.003) (0.006) (0.005) (0.004) (0.004)

Phys-Strat-Aug 0.971 0.971 0.962 0.960 0.930 0.913 0.921 0.899
(0.004) (0.005) (0.003) (0.004) (0.016) (0.019) (0.015) (0.019)
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We translate these sampled segmentations into quantitative errors
ccording to Section 3.7.3. Fig. 6 shows the volume variations for
n and out of distribution inference samples, for white matter, for
PRAGE (Left) and SPGR (Right), accompanied by the interquartile

ange (IQR) volumetric error bounds. For SPGR, the parameter space
rom which samples are taken is three-dimensional, so for visualisation
urposes, we order values according to the absolute volume error. We
erify that in both instances, Phys-Strat-Aug exhibits significantly more

consistent volumes, both in and out of distribution.
Uncertainty-wise, we note that volumetric uncertainties are larger

for out-of-distribution samples segmented by Phys-Strat-Aug compared
to Baseline, for both MPRAGE and SPGR, where uncertainties remain
more consistent throughout. This is especially evident when looking
at the more extreme MPRAGE inversion time samples. It is interesting
to note that even for in-distribution images, Phys-Strat-Aug exhibits
8

higher volumetric uncertainty than Baseline. We argue that this is m
ecause the physics-agnostic Baseline is overconfident in its predictions.
his network is privy only to images and, as such, can only make
redictions based on this singular piece of data. On the other hand,
hys-Strat-Aug considers another component, the physics of acquisition,
hich provides another ‘‘axis’’ along which it can be uncertain. While

his grants it a higher uncertainty, we emphasise how the mean segmen-
ation is still high quality and minimises deviation. What this means
n terms of utility is that one should look at relative changes in the
ncertainty to ascertain in and out of ‘‘distributioness’’ rather than at
ixed thresholds.

By focusing on the outliers, we observe that for SPGR samples,
ncertainty bounds are noticeably larger for Phys-Strat-Aug. These out-
iers largely correspond to out-of-distribution samples, specifically im-
ges simulated with flip angles lower than (10◦). As with MPRAGE,
he increased error for these samples in Phys-Strat-Aug allows most

easurements to still overlap with the ground truth volume.
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Table 3
Coefficients of variation (CoV) for Baseline, Phys-Base, Aug, Strat, Phys-Strat, Phys-Aug, Strat-Aug, and Phys-Strat-Aug on segmentation task,
averaged across test subjects. Standard deviations quoted in brackets. Bold values represent statistically best performances.

Experiments Sequence CoVs (×103)

MPRAGE SPGR

GM WM GM WM

IoD OoD IoD OoD IoD OoD IoD OoD

Baseline 6.39 22.50 14.94 51.12 61.91 170.10 32.57 158.93
(0.87) (4.08) (1.71) (7.11) (7.61) (31.32) (11.98) (16.83)

Phys-Base 2.72 14.67 3.28 28.10 77.22 127.22 20.77 264.80
(2.12) (7.30) (2.01) (3.98) (34.44) (18.61) (9.35) (8.52)

Aug 2.81 8.79 2.16 10.27 21.00 266.82 17.76 258.28
(1.26) (2.42) (0.67) (3.20) (5.91) (15.99) (9.42) (18.71)

Strat 1.27 4.15 1.33 5.05 17.68 29.91 8.88 52.17
(0.29) (1.56) (0.51) (2.36) (3.01) (8.02) (2.71) (9.19)

Phys-Strat 0.71 6.15 0.53 3.67 21.83 59.78 8.60 59.19
(0.23) (1.51) (0.25) (1.34) (0.83) (13.31) (0.64) (11.25)

Phys-Aug 2.66 10.73 3.47 7.78 9.54 31.00 6.70 88.62
(0.94) (0.53) (1.33) (1.51) (5.45) (9.02) (3.33) (18.32)

Strat-Aug 2.13 6.98 0.35 4.28 13.25 35.97 3.69 46.95
(0.84) (2.67) (0.14) (1.01) (5.58) (7.46) (1.76) (13.55)

Phys-Strat-Aug 0.42 4.74 0.51 3.65 15.76 28.88 7.12 44.78
(0.22) (1.30) (0.23) (0.62) (1.18) (9.74) (0.45) (4.22)
Fig. 5. Baseline and Phys-Strat-Aug comparisons. Comparing out-of-distribution MPRAGE (Top two rows) and SPGR (Bottom two rows) GM segmentations from the proposed and
baseline methods. Blue circles highlight examples of significant gyrus variability. Red circles denote regions of segmentation differences between protocols.
For SPGR, all the apparent outliers for Phys-Strat-Aug have signifi-
cantly larger associated errors, while this is not the case for the Baseline.
We observe that most outliers correspond to out-of-distribution samples
using very low flip angles (<10◦, highlighted in black in the figure).
Such images will be significantly less 𝑇1-weighted and therefore be less
familiar to the models, in addition to having reduced contrast, resulting
in poorer segmentation quality, so the observation that the physics-
informed network’s uncertainty around these samples is larger fits with
expectations.

4.5. Physics-driven multi-site harmonisation

To assess the performance of the method in a multi-site research
study setting, we use the ABIDE (Autism Brain Imaging Data Exchange)
neuroimaging dataset (Martino et al., 2013), which consists of struc-
tural and functional MR images from 19 sites, for 1112 subjects, 539
of which have been diagnosed with Autism Spectrum Disorder (ASD),
and 572 of which are controls. We focus on the 11 sites that employed
3D MPRAGE acquisitions, resulting in 614 relevant images. Crucially,
9

the sequence parameters employed across these sites differ, resulting
in contrast differences between sites (in addition to other site-specific
effects). The details of the acquisition parameters at each of these 11
sites can be found in Table 4.

By testing our physics-based segmentation methodology on this
subset of the ABIDE dataset, our goals are twofold: To further demon-
strate that networks trained on synthetic, MPM-based MR data, paired
with a robust augmentation scheme, can generalise to data acquired at
various different sites; and to show that the standardisation provided
by accounting for the physics of acquisition at each site can result in
harmonisation that is comparable to or exceeds the performance of
existing harmonisation methods.

4.5.1. Reformulating the MPRAGE static equation
The MPRAGE networks discussed thus far have been trained using

images generated with only a varying TI. The MPRAGE static equation
can also model the effects due to delay time, TD, and echo spacing time,
𝜏, which, when combined with TI, defines TR (Wang et al., 2014):

𝑇𝑅 = 𝑇 𝐼 + 𝑇𝐷 + 𝜏 (10)
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Fig. 6. Comparing volume consistency for WM for Baseline and Phys-Strat-Aug, for an example subject. Filled plots/Error bars correspond to IQR volumes. Left: MPRAGE. The
dashed grey region denotes the TI training time parameter range (600–1200 ms), with TIs outside this range being designated as out-of-distribution. Right: SPGR. Shown are the
volume deviations from forty realisations of a single subject, where acquisition parameters were sourced randomly from both in and out-of-distribution parameter ranges. Points
are sorted according to descending absolute volume deviation. The black points denote samples with FA lower than 10 degrees, for Phys-Strat-Aug.
Table 4
3D MPRAGE acquisition parameters for each relevant site in the ABIDE dataset (Kucharsky Hiess et al., 2015). The scanner used at all sites was a Siemens Magnetom.

Site Controls (m/f) ASD (m/f) Image acquisition Voxel size (mm3) Flip angle (deg) TR (ms) TE (ms) TI (ms) BW (Hz/Px)

CALTECHa 15/4 15/4 3D MPRAGE 1 × 1 × 1 10 1590 2.73 800 200
CMUb 10/3 11/3 3D MPRAGE 1 × 1 × 1 8 1870 2.48 1100 170
NYUc 79/26 68/11 3D MPRAGE 1.3 × 1 × 1.3 7 2530 3.25 1100 200
OLINd 13/3 18/2 3D MPRAGE 1 × 1 × 1 8 2500 2.74 900 190
OHSUe 15/0 15/0 3D MPRAGE 1 × 1 × 1 10 2300 3.58 900 180
UCLA1

f 29/4 42/7 3D MPRAGE 1 × 1 × 1.2 9 2300 2.84 853 240
UCLA2

g 12/2 13/0 3D MPRAGE 1 × 1 × 1.2 9 2300 2.84 853 240
PITTh 23/4 26/4 3D MPRAGE 1.1 × 1.1 × 1.1 7 2100 3.93 1000 130
USMi 43/0 58/0 3D MPRAGE 1 × 1 × 1.2 9 2300 2.91 900 240
YALEj 20/8 20/8 3D MPRAGE 1 × 1 × 1 9 1230 1.73 624 320

a California Institute of Technology.
b Carnegie Mellon University.
c NYU Langone Medical Center, New York.
d Olin, Institute of Living, Hartford Hospital.
e Oregon Health and Science University.
f University of California, Los Angeles.
g University of California, Los Angeles.
h University of Pittsburgh School of Medicine.
i University of Utah School of Medicine.
j Child Study Centre, Yale University.
The MPRAGE static equation can therefore be re-written to incorporate
TR directly:

𝑏𝑀 (𝑥) = 𝐺𝑀𝑃𝐷(𝑥)

(

1 − 2𝑒
−𝑇 𝐼
𝑇1(𝑥)

1 + 𝑒
−𝑇𝑅
𝑇1(𝑥)

)

, (11)

This allows us to directly incorporate the two main varying MPRAGE
ABIDE site sequence parameters, TI and TR, into the augmentation
simulation pipeline, which the network should learn to become robust
to. Because TR is contingent on TI, we opt to model a pseudo parameter
which we denote pTD, the sum of TD and 𝜏, which is added to TI to
create TR.

4.5.2. Main proposed models
To this end, we train three networks: A Phys-Strat-Aug style network

trained with MPRAGE images generated with TI = [600–1200] ms,
and pTD = [500–1600] ms (which leads to TR = [1100–2800] ms),
10
Strat-Aug, a network trained akin to Phys-Strat-Aug, without the explicit
passing of acquisition parameters during training, and CNN Baseline,
an Aug style network trained with MPRAGE images generated with a
single set of sequence parameters, to mimic the training of a standard
CNN with images originating only from a single site. Additionally,
we adopt the same robust augmentation scheme as outlined in Billot
et al. (2021) to improve generalisability for all three networks. Namely,
these are affine transforms, free-form deformations, spatial blurring,
and bias field. We omit the gamma intensity augmentation because it
directly affects contrast, which is undesirable in an environment where
we want contrast to be strongly associated with imaging parameters.
Crucially, we do not employ skull-stripped MPMs as input for training
these networks, as we want to show that our models can generalise to
un-skull-stripped acquisitions.
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4.5.3. Comparison methods
We used SPM12 (r7771,www.fil.ion.ucl.ac.uk/spm/), a widespread

neuroimaging processing tool, running on MATLAB (R2019a, The
MathWorks Inc., Natick, MA), to resample and rigidly co-register the
images into a common space prior to any training We also employ
SPM12 to generate grey matter, white matter, and CSF segmentations
f these images, acting as our non-CNN baseline.

As an additional baseline we select Billot et al.’s SynthSeg. SynthSeg
was shown to generalise to unseen data without requiring further train-
ing samples from said dataset, regardless of contrast. The authors have
made their code and pre-trained models readily available for use under
a GitHub repository (https://github.com/BBillot/SynthSeg), which we
make use of. SynthSeg outputs 31 individual parcellations, so to ensure
compatibility with our coarser tissue analyses we combine the smaller
regions to make up grey matter (cerebral cortex, cerebellum cortex, tha-
lamus, caudate, putamen, hippocampus, amygdala accumbens), white
matter (cerebral white matter, cerebellum white matter, pallidum,
ventral DC, brain stem), and CSF (lateral ventricles, inferior lateral
ventricles, third ventricle, fourth ventricle). Since this implementa-
tion of SynthSeg does not extra-ventricular CSF, we take intra-cranial
masks derived using GIF (Cardoso et al., 2015) (So as not to bias
it towards any method used in the study) and make the reasonable
assumption that the non-overlapping regions between the total SynthSeg
parcellations and this mask correspond to the extra-ventricular CSF.

We implement PSACNN as a further baseline. This involves fitting
GMMs to the three major tissue classes in all the selected ABIDE
images and calculating pseudo-parameters that are used for MPM static
equation simulations that are used to generate images for training. We
use the same MPMs we use for our proposed method for PSACNN, and
all PSACNN networks are trained until convergence.

While both SynthSeg and PSACNN are not designed for implicit
harmonisation, we include them in our harmonisation analysis to as-
certain how prominent, frequently used methods perform by default.
We have seen how physics-absent models like Strat-Aug exhibit non-
insignificant harmonisation abilities compared to a baseline, so it stands
to reason that, similarly, these methods, too, could demonstrate natural
harmonisation capabilities even if they are not directly cognisant of the
physics of acquisition as our physics-informed networks are.

We compare harmonisation performance with that offered by Com-
Bat (Johnson et al., 2007). ComBat models features as a combination of
biological covariates (e.g., Age, gender, pathology) and site effects, the
latter of which can be subdivided into additive and multiplicative com-
ponents. This allows ComBat to regress out site effects while preserving
biological variability. ComBat has been shown to consistently out-
perform other harmonisation methods in various applications, includ-
ing multi-site cortical thickness measurement harmonisation (Fortin
et al., 2018), and multi-site diffusion tensor imaging data harmonisa-
tion (Fortin et al., 2017) and so we consider it to be the current gold
standard. In the context of image segmentation, let 𝑦𝑖𝑗𝑣 denote the un-
armonised prediction for a specific tissue (grey matter, white matter,
r CSF in our case) feature (voxels, volumes, etc.) 𝑣, for site 𝑖, and
ubject 𝑗. ComBat models this value according to the following:

𝑖𝑗𝑣 = 𝛼𝑣 +𝑋𝑖𝑗𝛽𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣𝜖𝑖𝑗𝑣 (12)

here 𝛼𝑣 represents the average value of that feature across all sites
nd subjects, 𝑋𝑖𝑗 represents the design matrix for biological covari-
tes, 𝛽𝑣 the design matrix’s corresponding featurewise coefficients, 𝛾𝑖𝑣
enotes featurewise additive site effects, 𝛿𝑖𝑣 denotes the multiplicative
eaturewise site effects, and 𝜖𝑖𝑗𝑣 are the model residuals.

The harmonised feature values are derived via the following:

𝐻𝑎𝑟𝑚
𝑖𝑗𝑣 =

𝑦𝑖𝑗𝑣 − 𝛼𝑣 −𝑋𝑖𝑗𝛽𝑣 − 𝛾𝑖𝑣
𝛿𝑖𝑣

+ 𝛼𝑣 +𝑋𝑖𝑗𝛽𝑣 (13)

While in certain applications, the features employed can be individual
voxels, this is unsuitable for our use case. The choice of feature would
have to be congruous across all subjects, which would only be the case
11
if all images were non-rigidly aligned. Such an alignment process would
prove destructive for the purpose of volumetric analysis, however, mak-
ing it ill-suited here. Furthermore, the computational cost to construct
such a model for 1842 (614 subjects, three tissue segmentations each)
1 mm isotropic 3D volumes would make this impractical. As such, we
use the individual tissue volumes as our features, 𝑣, in our ComBat
models.

4.5.4. Segmentation accuracy analysis
As neural networks are often criticised for their unstable behaviour

when applied to out-of-distribution data, to ascertain that the pro-
posed method’s segmentation is stable to OoD data, we calculate Dice
scores between the segmentation outputs of the proposed models and
SPM. SPM has seen widespread use for image segmentation due to
its stability, combining mixture models, anatomical spatial priors, and
MR-related intensity non-uniformity corrections to classify tissues (Ash-
burner and Friston, 2005), which justifies its use as a good non-CNN
segmentation baseline. Fig. 7 shows the Dice scores calculated between
each of the neural network’s predictions and the corresponding SPM
segmentation. We do not expect a perfect correspondence, especially
when we expect any network exposed to our physics simulation-based
methodology to account for the physics of acquisition, but these effects
should not influence Dice scores significantly. CNN Baseline compara-
tively exhibits the greatest number of outliers, or failure cases, as well
as a greater variance that skews towards lower Dice scores. Dice scores
for CSF are notably worse than for grey and white matter. SynthSeg
xhibits the statistically highest Dice scores for grey matter, Phys-Strat-
Aug the best Dice scores for white matter, and PSACNN the best Dice
scores for CSF.

4.5.5. Covariate preservation analysis
Any harmonisation procedure carries with it the risk of masking

the effects due to biological covariates (Zhao et al., 2019). A method
that removes the effects due to the site but does not ensure that other
covariates are preserved is entirely lackluster. ComBat is explicitly de-
signed to attempt to mitigate any deleterious effects its harmonisation
procedure might have on covariates, and it follows that we should
evaluate our methods to verify that this is also the case. Volume ratios
should be predictive of age, so we select age as the variable of interest.
We investigate the degree to which age is preserved by fitting a linear
age prediction model over the features for a subset of subjects and
testing this model on a holdout subset over ten folds. The better the
model’s predictive ability, the less the harmonisation process should
have influenced the age-related biological variability. We hope that our
methods preserve age at least as well as ComBat harmonised SPM.

Fig. 8 showcases boxplots from the age regression models. Strat-
ug boasts the lowest RMSE, while ComBat-harmonised SPM (SPM-C)
xhibits the worse performance. It is interesting to note that Phys-Strat-
Aug performs worse than its physics-agnostic counterpart. While the
difference is not large and still outcompetes alternative methods, it
could be explained by the fact that the physics-informed model over-
compensates when accounting for the sequence variables. To elaborate,
physics-informed models adjust their predictions based on the physics
parameters fed. The model’s knowledge of the physics parameters is
not expected to be perfect; there are additional un-modelled variables,
absent in the static equation formulations, that the model is not made
privy to (scanner make, site of acquisition, noise profiles, etc.) that af-
fect contrast that the model has to account for implicitly. The erroneous
conflation of these non-systematic effects with the effects that arise
purely from the physics of acquisition can lead to the model exaggerat-
ing the degree to which it tries to correct them, given the information

it is exposed to, which could explain these observed discrepancies.

http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/BBillot/SynthSeg


Medical Image Analysis 92 (2024) 103058P. Borges et al.
Fig. 7. Dice scores of Phys-Strat-Aug, Strat-Aug, CNN Baseline, PSACNN, and SynthSeg when compared against SPM.
Fig. 8. Root-mean-square error boxplots for age prediction using linear regression, for each of the harmonisation experiments. Tissue volumes (GM, WM, and CSF) are used as
model features.
4.5.6. Multi-site harmonisation analysis

The age distribution is not homogeneous across all sites, so it is not
reasonable to assume that age-based trends between age-heterogeneous
site distributions should be alike. We, therefore, partition the sites into
two distinct groups based on a per-site mean age. The first we denote as
‘‘Young’’, where sites whose mean age is less than 16 are selected. The
sites that fulfil this criteria are OHSU, UCLA1, UCLA2, YALE, and NYU.
The second partition we denote as ‘‘Old’’, where sites whose mean age
is greater than 22 are selected. The sites that fulfil this criterion are
CALTECH, USM, and CMU. Under these criteria, PITT is excluded.
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Per model (for each site and tissue), per age-partitioned group, we
use linear regression to fit a linear trend. Table 5 shows the mean and
standard deviations of these trends across sites, per group, tissue type,
and experiment. We expect that if the volumes are well-harmonised, the
intercepts and gradients across all sites should be similar. The degree
of similarity should be reflected in the standard deviation of these
variables across all sites.

We make use of Levene’s test to ascertain whether the standard
deviations between each experiment’s trends and those of SPM-C are
significant. We verify that Phys-Strat-Aug and Strat-Aug exhibit statisti-
cally significantly lower inter-site standard deviations than SPM-C for



Medical Image Analysis 92 (2024) 103058P. Borges et al.
Table 5
Trends statistics across sites, per age-partitioned group, tissue type, and experiment. Standard deviations are quoted in brackets. Bold values denote improvement over SPM-C.

Experiments Grey matter White matter CSF

‘‘Young’’ ‘‘Old’’ ‘‘Young’’ ‘‘Old’’ ‘‘Young’’ ‘‘Old’’

b m
(×10−3)

b m
(×10−3)

b m
(×10−3)

b m
(×10−3)

b m
(×10−3)

b m
(×10−3)

SPM (Baseline) 0.6261
(0.0338)

−5.0864
(3.1716)

0.5677
(0.0465)

−2.2552
(1.2661)

0.2754
(0.0121)

0.7202
(0.9218)

0.2746
(0.0190)

1.0360
(0.7280)

0.0985
(0.0442)

4.3661
(3.9279)

0.1577
(0.0653)

1.2192
(1.9581)

CNN Baseline 0.5584
(0.0382)

−5.9047
(0.8932)

0.4435
(0.0773)

−2.0377
(1.2051)

0.3848
(0.0236)

0.3095
(0.7452)

0.4481
(0.0972)

0.9013
(0.3833)

0.0569
(0.0230)

5.5952
(1.3503)

0.1084
(0.0340)

1.1364
(1.3545)

PSACNN 0.4457
(0.0080)

−0.5686
(0.6376)

0.4540
(0.0053)

−0.8821
(0.2807)

0.4487
(0.0148)

−0.3971
(0.5993)

0.4306
(0.0111)

0.0636
(0.2355)

0.1056
(0.0099)

0.9657
(0.6027)

0.1154
(0.0095)

0.8184
(0.3920)

SynthSeg 0.5287
(0.0081)

−1.8472
(0.5637)

0.5031
(0.0098)

−0.9001
(0.0959)

0.3196
(0.0117)

2.0294
(0.8456)

0.3430
(0.0112)

0.5249
(0.3229)

0.1517
(0.0090)

−0.1823
(0.7813)

0.1539
(0.0272)

0.3752
(0.3141)

Strat-Aug 0.5353
(0.0144)

−3.7060
(0.8859)

0.5000
(0.0174)

−1.8534
(0.4316)

0.3736
(0.0208)

1.0884
(0.7026)

0.3923
(0.0227)

0.6958
(0.2525)

0.0911
(0.0254)

2.6176
(1.1613)

0.1077
(0.0388)

1.1575
(0.5582)

Phys-Strat-Aug 0.5475
(0.0114)

−3.8187
(0.7150)

0.4962
(0.0265)

−1.7860
(0.3925)

0.4048
(0.0210)

1.2285
(0.5688)

0.4236
(0.0237)

0.7272
(0.2777)

0.0477
(0.0179)

2.5902
(0.5908)

0.0802
(0.0244)

1.0587
(0.5326)

SPM-C 0.6286
(0.0451)

−4.5689
(3.9178)

0.5691
(0.0340)

−2.1296
(1.3734)

0.2797
(0.0107)

0.7158
(0.8418)

0.2716
(0.0195)

1.0877
(0.7771)

0.0947
(0.0541)

3.5818
(4.4873)

0.1554
(0.0463)

1.1982
(1.8874)

CNN Baseline-C 0.5590
(0.0384)

−6.0404
(1.0361)

0.4574
(0.0320)

−2.0423
(1.1976)

0.3799
(0.0097)

0.2363
(0.8568)

0.4145
(0.0538)

0.9936
(0.5009)

0.0609
(0.0114)

5.8040
(1.4680)

0.1336
(0.0345)

0.8382
(1.3743)

PSACNN-C 0.4437
(0.0088)

−0.4821
(0.7567)

0.4507
(0.0086)

−0.8173
(0.3490)

0.4495
(0.0086)

−0.3945
(0.6048)

0.4318
(0.0121)

0.0669
(0.2338)

0.1055
(0.0087)

0.9697
(0.6214)

0.1166
(0.0073)

0.7835
(0.3024)

SynthSeg-C 0.5290
(0.0082)

−1.8312
(0.6192)

0.5068
(0.0022)

−0.8958
(0.0981)

0.3222
(0.0209)

2.0446
(0.8630)

0.3459
(0.107)

0.5569
(0.4041)

0.1466
(0.0079)

−0.0268
(0.5980)

0.1488
(0.0310)

0.2881
(0.4341)

Strat-Aug-C 0.5333
(0.0132)

−3.7094
(0.8908)

0.5012
(0.0133)

−1.8832
(0.4345)

0.3738
(0.0201)

1.0993
(0.7404)

0.3885
(0.0231)

0.7313
(0.2887)

0.0932
(0.0248)

2.5794
(1.0293)

0.1098
(0.0294)

1.1668
(0.5296)

Phys-Strat-Aug-C 0.5525
(0.0111)

−3.8440
(0.8408)

0.5006
(0.0105)

−1.7847
(0.4032)

0.3967
(0.0138)

1.2319
(0.4466)

0.4212
(0.0162)

0.7639
(0.2978)

0.0506
(0.0142)

2.6277
(0.6620)

0.0783
(0.0216)

1.0160
(0.5235)
P
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grey matter and CSF, for most instances of slope and intercept. CNN
Baseline, on the other hand, does not perform better than SPM-C in
most cases and, in fact, shows noticeably worse intercept standard devi-
ations, in particular for white matter in the ‘‘Old’’ cohort. Additionally,
the mean trend gradients predicted from CNN Baseline’s segmentations
present the greatest departure from its counterparts when looking at
the ‘‘Young’’ cohort.

We further investigate the changes incurred by fitting ComBat
models to the segmentation volume values of each of the CNN-based
experiments. We note that fitting a ComBat model on all the CNN-
based model outputs results in decreased intercept standard deviations
but slightly worse gradient standard deviations. This is unsurprising, as
accounting for the additive effects of site (i.e., any linear discrepancies
which relate to the linear intercept) is the easier of the tasks to perform.
Still, it seems to come at the cost of gradient variation. Unsurprisingly,
CNN Baseline benefits the most from this process, as its site volumes
displayed the greatest disparity in most cases.

Fig. 9 shows a scatter plot against age of white matter volume ratios
for all subjects for all the CNN-based experiments. Qualitatively, this
figure clearly shows that CNN Baseline has completely failed to gener-
alise to two of the sites, as evidenced by their distinctly higher white
matter volume ratios compared to other sites. This is not observed for
Phys-Strat-Aug or Strat-Aug, indicating that the physics augmentation
pipeline has allowed these networks to generalise to sites exhibiting
different tissue contrasts aptly. This is also reflected in Fig. 7, which
illustrates CNN Baseline’s greater number of negative outliers, as well
as its statistically significantly poorer performance compared to Phys-
Strat-Aug, for all tissues. Expectedly, SynthSeg aptly generalises to all
sites, evidenced by both figures. PSACNN shows similar age trends for
all sites in Fig. 9, though exhibiting a flatter gradient compared to
other methods. In terms of Dice scores, it under-performs on average
compared to other methods in terms of grey and white matter though
exhibiting far less extreme outliers when compared to CNN Baseline,
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but outperforms these when it comes to CSF. u
4.5.7. Performance across different scanner types
One obvious pitfall for a method trained using static equations is

that it might fail to generalise to images acquired on scanners from ven-
dors that employ different sequence implementations. The quantitative
data was acquired on a Siemens Magnetom TrioTim scanner, and the
formulation of the MPRAGE equation is based on the Siemens MPRAGE
sequence.

To assess this degree of generalisability, or lack thereof, we make
use of 1233 𝑇1-weighted images from the Alzheimer’s Disease Neu-
roImaging Initiative (ADNI1) Of these, 682 were acquired on Siemens
scanners, 303 on General Electric scanners, and 248 on Philips scan-
ners. We ran inference on these images with Phys-Strat-Aug, Strat-Aug,
PSACNN (re-trained using predicted pseudo-parameters from these
ADNI subjects) and SynthSeg. Statistical significance is evaluated based
on signed-rank Wilcoxon tests. For Phys-Strat-Aug, lacking equivalent
exchanges for the parameters for the non-Siemens scanner sequences,
equivalent parameter choices are made.

Fig. 10 showcases boxplots for the Dice scores for each model and
manufacturer. Phys-Strat-Aug exhibits the statistically best performance
across all scanner types. Strat-Aug outperforms SynthSeg on those im-
ages acquired by Siemens and General Electric scanners, and PSACNN
performs worst across all scanners.

We verify that for Phys-Strat-Aug and Strat-Aug, there are statisti-
cally significant differences between the Dice scores across all man-
ufacturers, with Phys-Strat-Aug performing best on Siemens images,

1 The ADNI was launched in 2003 as a public–private partnership, led by
rincipal Investigator Michael W. Weiner, MD. The primary goal of ADNI
as been to test whether serial magnetic resonance imaging (MRI), positron
mission tomography (PET), other biological markers, and clinical and neu-
opsychological assessment can be combined to measure the progression of
ild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For

p-to-date information, see www.adni-info.org.

http://www.adni-info.org
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Fig. 9. White matter volume ratios for all MPRAGE subjects in the ABIDE dataset for each of the experiments. Linear trends of best fit are calculated and shown, per site,
extrapolated to the full dataset age range.

Fig. 10. Dice score boxplots for models evaluated on ADNI images originating from three different manufacturers.
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Fig. 11. Logarithmic SPGR uncertainty contour, averaged over all tissues and subjects. Scattered white points denote parameter choices sourced from relevant neuroimaging
literature. Numbers enclosed in square brackets adjacent to each point denote the relevant reference: [6]: Cocosco et al. (1997), [8]: Di Martino et al. (2014), [18]: Helms et al.
(2008), [19]: Helms et al. (2009), [29]: Leow et al. (2007), [35]: Runge et al. (1991), [40]: Taki et al. (2011).
and Strat-Aug performing best on Philips images. For SynthSeg, this
is only observed between Philips and General Electric, but there is
no significant difference between Siemens and General Electric or
between Siemens and Philips. Quality-wise, Phys-Strat-Aug exhibits the
statistically highest Dice scores at all sites.

4.6. Uncertainty-informed sequence optimisation

In most neuroimaging research studies, MRI images are obtained
to extract surrogate biomarkers of interest. These images are thus
optimised to maximise signal and contrast (and subsequently good
measurements) in the region of interest. As uncertainty is not only
proportional to the degree of unfamiliarity but also to the difficulty of
the task, an image which results in the lowest segmentation uncertainty
of the region of interest should be optimal from the point of view of the
surrogate biomarker of interest.

We can therefore leverage uncertainty predictions to ascertain pa-
rameter choices or regions in parameter space that minimise said
uncertainty. In theory, images produced with these parameter pairs
will be easiest for networks to segment and should produce the most
confident predictions. Furthermore, we can verify if those regions of
minimal uncertainty overlap with typical sequence parameters sourced
from real-life studies. To be clear, we do not carry out this investigation
15
to promote our models as a replacement for standard sequence optimi-
sation practices but more as a validation that our models’ uncertainty
matches expectations established by observation.

To this end, we run inference on two uncertainty-aware networks
for each sequence of interest, SPGR and MPRAGE, on simulated vol-
umes spanning the range of sequence parameters to be investigated. We
then calculate the calibrated volumetric uncertainty for each volume
as outlined in previous sections and aggregate the results in a contour
plot. The range of parameters spanned for SPGR are (TR) = [5–100]
ms and flip angle (FA) = [5–90] degrees. Because we only deal with
𝑇1-weighted images, whose contrast is largely dependent on TR, TE
is ideally minimised. As such, it is fixed at 4 ms; furthermore, its
inclusion would increase the processing time multiplicatively. Akin to
the MPRAGE networks trained for the ABIDE harmonisation, we vary
both pTD and TI. The range of parameters spanned for MPRAGE are
(pTD) = [200–2000], (TI) = [400–2000].

Figs. 11 and 12 show the logarithmic volumetric uncertainty con-
tours for SPGR and MPRAGE, respectively, averaged across all tissues
and inference subjects. Though not shown, there is a significant overlap
between subjects, which lends credence to the notion that the uncer-
tainty is driven by the contrast between tissues, and should therefore be
independent of subject-specific anatomy. The scattered points denote
the sequence parameters used by various studies and trials, where the
annotations correspond to relevant references to these. For MPRAGE,
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Fig. 12. Logarithmic MPRAGE uncertainty contour, averaged over all tissues and subjects. Scattered points denote parameter choices sourced from relevant neuroimaging literature.
Numbers enclosed in square brackets adjacent to each point denote the relevant reference: [8]: Di Martino et al. (2014), [42]: Wang et al. (2014).
there is a significant overlap between literature sequence parameters
and regions of lowest uncertainty.

For SPGR, this is also verified, though there is an absence in the
literature of 𝑇1-weighted SPGR sequences employing larger (>50◦) flip
angles and larger (>60 ms) repetition times. Higher repetition times are
correlated with decreased 𝑇1-weighting, and increased proton density
weighting (Gras et al., 2013). Additionally, if a good contrast can be
attained at a lower 𝑇𝑅 then it stands to reason that it would be selected
since this would also save time by reducing the total acquisition time
(which is proportional to 𝑇𝑅).

The absence of higher flip angles in 𝑇1-weighted SPGR studies can
be explained in the context of Ernst angles, the flip angle at which the
signal for a particular tissue is maximised given a certain TR and the
𝑇1 properties of the tissue of interest. For the 𝑇𝑅𝑠 typically employed
in 𝑇1-weighted SPGR sequences, the Ernst angle for GM and WM lies
in the range of [10–25]◦ (Runge et al., 1988). Maximising a single
tissue’s signal will not guarantee that the contrast between tissues is
maximised, which can result in higher FAs being selected. Far from the
Ernst angle for these tissues, the signal falls exponentially, however,
even if the relative contrast remains significant, which in turn results in
a lower signal-to-noise ratio. Our simulation model does not explicitly
account for this, as a noise model is absent, but is well-suited for
inclusion in future work.
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5. Limitations

The method is admittedly limited to those sequences that can be
aptly represented as static equations. We do argue that at the very least,
for the purposes of contrast agnosticism, a wide enough range of real-
istic contrasts can be generated with currently implemented sequences,
which should allow for our method to generalise further. Furthermore,
our method relies on training with quantitative data, which is far more
scarce than its qualitative counterpart. This can hinder widespread
adoption compared to typical, qualitative image-based CNN pipelines.

The Physics Gold Standard, while proving apt for coarse segmenta-
tions, is not suitable for obtaining finer parcellations, as it becomes
more complicated or even impossible to differentiate between smaller
structures using their intrinsic MR properties alone. That being said,
there is nothing in the method that precludes the use of standard,
finer, manual annotations if the task calls for it, and more consistent
parcellations would still be expected, granted that these would no
longer be based on anatomical ground truth.

6. Discussion and conclusions

In this work, we demonstrated that with some well-justified mod-
ifications to the training pipeline, a physics-informed network can
achieve extremely constrained tissue segmentations across a wide range
of contrasts across all tissue types and investigated sequences, thus
strengthening its harmonisation capabilities.
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Phys-Strat-Aug boasts the statistically best performance across all
etrics for most experiments. In instances where it is outperformed,

his almost always corresponds to Strat-Aug. It is evident that the
stratification loss with its respective mini-batch handling proves to be
especially beneficial from the volume consistency it enforces, becoming
even more potent when combined with the simulation augmentation,
which affords the model a richer exploration of sequence parameter
space which should not only grant it greater invariance to the choice
of acquisition parameters but also greater generalisability owing to the
functionally infinite training data at its disposal.

Furthermore, we also showed that it can suitably generalise to un-
seen domains while maintaining volume consistency without compro-
mising segmentation quality and is validated by accurately quantifying
the volumetric uncertainty. The uncertainty estimates further suggest
that incorporating knowledge of the acquisition scheme grants the
model an additional level of safety, as volumetric uncertainties proved
to be larger for out-of-distribution parameter-generated images.

From our uncertainty-based sequence validation, we verify that, for
MPRAGE, there is a significant overlap between the sequence parame-
ter region of lowest uncertainties assigned by our physics models and
those sequence parameters employed in the literature for neuroimaging
studies. This is a twofold boon, as it not only lends credence to the
model by showcasing this congruence but also could also allow for
exploratory work involving newly developed sequences. Given their
static equation analogue, they could be used in combination with
our uncertainty-aware networks to ascertain in advance those param-
eter combinations that might be most favourable for analyses, in a
precursor-style type of analysis rather than a replacement for existing
optimisation techniques, of course. The SPGR counterpart showcased
that while the minimum uncertainty overlap is verified, there are
clearly unaccounted-for variables that need to be considered, such as
noise modelling.

Our experiments on the multi-site ABIDE dataset showcase how our
pipeline can provide harmonised segmentations for a multi-site volume
study that largely out-competes the ComBat harmonised SPM baseline
while also proving equal to or better at this than another contrast-
agnostic method, SynthSeg. It is worth noting that SynthSeg ’s mean
normalised volume gradients for grey matter were overall noticeably
lower compared to other experiments, and for the ‘‘old’’ cohort, fell
outside the range of expected as found in literature trends (Scahill et al.,
2003; Farokhian et al., 2017), potentially compromising its ability to be
used in such a fashion. The same is observed for PSACNN, in an even
more extreme manner for grey and white matter.

Furthermore, we demonstrate how a naively trained, single-contrast
baseline fails to generalise to multiple sites, providing less congruent
trends, worse tissue volume ratio matching, and worse segmentation
quality. When combined with the observation that the performance
between Phys-Strat-Aug and Strat-Aug is comparable, there exists the
implication that the most relevant component in the pipeline is the
multi-contrast physics augmentation block. However, small further
improvements seem to be achieved by explicitly incorporating the
sequence acquisition parameters.

We further emphasise how our physics-informed networks were
able to generalise well to a complete holdout dataset composed of
images originating from multiple different sites, acquired using differ-
ent sequence parameters. This is in spite of the low number (27) of
unique phenotypes involved in training and validating our models. We
attribute this both to our physics augmentation pipeline and to the
robust augmentation scheme employed, particularly the use of free-
form deformations. However, as mentioned previously, the CSF Dice
scores are significantly lower than their GM and WM counterparts.
This can, in part, be attributed to how SPM’s CSF maps include non-
CSF tissue, such as dura mater, which are absent from the CNN-based
experiments’ CSF segmentations, and this drop in performance is also
17

observed for SynthSeg and PSACNN.
The ABIDE portion of this study evaluates our model in terms of
sequence parameter variations, but we also sought to investigate perfor-
mance across scanners made by different vendors. By testing our model
on images acquired on Siemens, General Electric, and Philips scanners,
we observed how Phys-Strat-Aug exhibited high Dice scores when com-
pared to established baselines, SynthSeg and PSACNN, outperforming
both in all instances.

In summary, we demonstrate that physics-informed networks,
trained with MR static equation-based simulated data, can generalise to
unseen datasets while also alleviating the biases introduced by different
sequence parameter choices to produce more consistent segmenta-
tions and, therefore, volumetric biomarkers without requiring manual
tissue annotations. We also show that these networks, when paired
with uncertainty modelling, are capable of use as sequence parameter
investigation models.

Future work will involve using finer parcellations, not directly
derived from the quantitative maps themselves in the same fashion as
the Physics Gold Standard, and investigating the degree to which seg-
mentation consistency can be attained in these instances. Furthermore,
we would like to explore the effects of varying input image resolution,
as this is a property that data sourced from the clinic often boasts.

CRediT authorship contribution statement

Pedro Borges: Conceptualization, Formal analysis, Investigation,
Methodology, Validation, Writing – original draft. Richard Shaw:
Conceptualization. Thomas Varsavsky: Visualization, Writing – review
& editing. Kerstin Kläser: Visualization, Writing – review & edit-
ing. David Thomas: Conceptualization, Resources, Writing – review
& editing. Ivana Drobnjak: Conceptualization, Supervision, Writing –
review & editing. Sebastien Ourselin: Funding acquisition. M. Jorge
Cardoso: Conceptualization, Investigation, Project administration, Su-
pervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The models described in the work can be run by accessing the
mentioned GitHub repo. The publically available data which has been
used for this work has been mentioned and referenced in full.

Acknowledgements

This project was funded by the Wellcome Flagship Programme
(WT213038/Z/18/Z) and Wellcome EPSRC CME (WT203148/Z/16/Z).
D.L.T. was supported by the UCL Leonard Wolfson Experimental Neu-
rology Centre (PR/ylr/18575), the UCLH NIHR Biomedical Research
Centre, and the Wellcome Trust (Centre award 539208).

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Insti-
tutes of Health Grant U01 AG024904) and DOD ADNI (Department of
Defense award number W81XWH-12-2-0012). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imag-
ing and Bioengineering, and through generous contributions from the
following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-
ery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharma-
ceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La
Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research

& Development, LLC.; Johnson & Johnson Pharmaceutical Research



Medical Image Analysis 92 (2024) 103058P. Borges et al.
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition Therapeu-
tics. The Canadian Institutes of Health Research is providing funds
to support ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated
by the Alzheimer’s Therapeutic Research Institute at the University of
Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

The authors declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2023.103058.

References

Ashburner, J., Friston, K.J., 2005. Unified segmentation.. NeuroImage 26 (3), 839–851.
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018.

Billot, B., Greve, D.N., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B.,
Dalca, A.V., Iglesias, J.E., 2021. Synthseg: Domain randomisation for segmentation
of brain MRI scans of any contrast and resolution. arXiv:2107.09559 [cs].

Borges, P., Sudre, C., Varsavsky, T., Thomas, D., Drobnjak, I., Ourselin, S., Car-
doso, M.J., 2020. Physics-informed brain MRI segmentation. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). vol. 11827 LNCS, Springer, pp. 100–109.
http://dx.doi.org/10.1007/978-3-030-32778-1_11, arXiv:2001.10767.

Cardoso, M.J., et al., 2015. Geodesic information flows: Spatially-variant graphs and
their application to segmentation and fusion. IEEE Trans. Med. Imaging 34 (9),
1976–1988.

Chavhan, G.B., 2016. Appropriate selection of MRI sequences for common scenarios
in clinical practice. Pediatr. Radiol. 46 (6), 740–747. http://dx.doi.org/10.1007/
s00247-016-3556-4.

Cocosco, C.A., Kollokian, V., K-s Kwan, R., Bruce Pike, G., Evans, A.C., 1997. BrainWeb:
Online interface to a 3D MRI simulated brain database. URL http://www.bic.mni.
mcgill.ca/brainweb/.

Consortium", M., 2020. MONAI: Medical open network for AI. http://dx.doi.org/10.
5281/zenodo.4323059, URL https://github.com/Project-MONAI/MONAI.

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S.,
Assaf, M., Bookheimer, S.Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I.,
Ertl-Wagner, B., Fair, D.A., Gallagher, L., Kennedy, D.P., Keown, C.L., Keysers, C.,
Lainhart, J.E., Lord, C., Luna, B., Menon, V., Minshew, N.J., Monk, C.S., Mueller, S.,
Müller, R.A., Nebel, M.B., Nigg, J.T., O’Hearn, K., Pelphrey, K.A., Peltier, S.J.,
Rudie, J.D., Sunaert, S., Thioux, M., Tyszka, J.M., Uddin, L.Q., Verhoeven, J.S.,
Wenderoth, N., Wiggins, J.L., Mostofsky, S.H., Milham, M.P., 2014. The autism
brain imaging data exchange: Towards a large-scale evaluation of the intrinsic
brain architecture in autism. Mol. Psychiatry 19 (6), 659–667. http://dx.doi.org/
10.1038/mp.2013.78, URL http://fcp-indi.github.com.

Dinsdale, N.K., Jenkinson, M., Namburete, A.I., 2020. Unlearning scanner bias for MRI
harmonisation in medical image segmentation. In: Communications in Computer
and Information Science. vol. 1248 CCIS, Springer, pp. 15–25. http://dx.doi.org/
10.1007/978-3-030-52791-4_2.

Eaton-Rosen, Z., Bragman, F., Bisdas, S., Ourselin, S., Cardoso, M.J., 2018. Towards
safe deep learning: accurately quantifying biomarker uncertainty in neural network
predictions. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 11070
LNCS, Springer Verlag, pp. 691–699, arXiv:1806.08640.

Farokhian, F., Yang, C., Beheshti, I., Matsuda, H., Wu, S., 2017. Age-related gray and
white matter changes in normal adult brains. http://dx.doi.org/10.14336/AD.2017.
0502.

Fortin, J.P., Cullen, N., Sheline, Y.I., Taylor, W.D., Aselcioglu, I., Cook, P.A., Adams, P.,
Cooper, C., Fava, M., McGrath, P.J., McInnis, M., Phillips, M.L., Trivedi, M.H.,
Weissman, M.M., Shinohara, R.T., 2018. Harmonization of cortical thickness
measurements across scanners and sites. NeuroImage 167, 104–120. http://dx.doi.
org/10.1016/j.neuroimage.2017.11.024.

Fortin, J.-P., Parker, D., Tunç, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R.,
Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T.,
2017. Harmonization of multi-site diffusion tensor imaging data. 116541. http:
//dx.doi.org/10.1101/116541, bioRxiv.
18
Foulkes, A.J., Slattery, C.F., Paterson, R.W., Modat, M., Callaghan, M.F.,
Weiskopf, N., Schott, J.M., Fox, N.C., 2016. IC-P-161: Phenotypic differences
in quantitative MRI parameters in typical amnestic Alzheimer’s disease
and PCA in a Young-onset Alzheimer’s cohort. Alzheimer’s Dementia
12, P119. http://dx.doi.org/10.1016/J.JALZ.2016.06.192, https://alz-
journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192https://alz-
journals.onlinelibrary.wiley.com/doi/abs/10.1016/j.jalz.2016.06.192https://alz-
journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2016.06.192.

Gal, Y., Ghahramani, Z., 2015. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In: 33rd International Conference on Machine
Learning, ICML 2016. vol. 3, International Machine Learning Society (IMLS), pp.
1651–1660, arXiv:1506.02142.

Graham, M.S., Sudre, C.H., Varsavsky, T., Tudosiu, P.D., Nachev, P., Ourselin, S.,
Cardoso, M.J., 2020. Hierarchical brain parcellation with uncertainty. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). vol. 12443 LNCS, Springer Science and
Business Media Deutschland GmbH, pp. 23–31. http://dx.doi.org/10.1007/978-3-
030-60365-6_3, arXiv:2009.07573, URL https://arxiv.org/abs/2009.07573v1.

Gras, V., Abbas, Z., Shah, N.J., 2013. Spoiled FLASH MRI with slice selective
excitation: Signal equation with a correction term. Concepts Magn. Reson. A 42 (3),
89–100. http://dx.doi.org/10.1002/CMR.A.21264, URL https://onlinelibrary.wiley.
com/doi/full/10.1002/cmr.a.21264.

Helms, G., Dathe, H., Dechent, P., 2008. Quantitative FLASH MRI at 3T using a
rational approximation of the ernst equation. Magn. Reson. Med. 59 (3), 667–672.
http://dx.doi.org/10.1002/mrm.21542, URL www.interscience.wiley.com.

Helms, G., Draganski, B., Frackowiak, R., Ashburner, J., Weiskopf, N., 2009. Im-
proved segmentation of deep brain grey matter structures using magnetization
transfer (MT) parameter maps. NeuroImage 47 (1), 194–198. http://dx.doi.org/10.
1016/j.neuroimage.2009.03.053, URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2694257/.

Horner, M., Luke, S.M., Genc, K.O., Pietila, T.M., Cotton, R.T., Ache, B.A.,
Levine, Z.H., Townsend, K.C., Towards Estimating the Uncertainty Associated with
Three-Dimensional Geometry Reconstructed from Medical Image Data.

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J., 2018. Artificial
intelligence in radiology. Nat. Rev. Cancer 18 (8), 500–510. http://dx.doi.org/10.
1038/S41568-018-0016-5, URL https://pubmed.ncbi.nlm.nih.gov/29777175/.

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H., 2018. No
new-net. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 11384 LNCS,
Springer Verlag, pp. 234–244, arXiv:1809.10483.

Jog, A., Carass, A., Roy, S., Pham, D.L., Prince B Amod, J.L., 2015. MR image
synthesis by contrast learning on neighborhood ensembles. http://dx.doi.org/10.
1016/j.media.2015.05.002.

Jog, A., Hoopes, A., Greve, D.N., Van Leemput, K., Fischl, B., 2019. PSACNN: Pulse
sequence adaptive fast whole brain segmentation. NeuroImage 199, 553–569.
http://dx.doi.org/10.1016/J.NEUROIMAGE.2019.05.033, arXiv:1901.05992.

Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8 (1), 118–127. http:
//dx.doi.org/10.1093/biostatistics/kxj037.

Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E., 2018. A lifelong learning
approach to brain MR segmentation across scanners and protocols. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). vol. 11070 LNCS, Springer Verlag, pp. 476–484.
http://dx.doi.org/10.1007/978-3-030-00928-1_54/FIGURES/2, arXiv:1805.10170,
URL https://link.springer.com/chapter/10.1007/978-3-030-00928-1{_}54.

Kendall, A., Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning for
computer vision? In: Advances in Neural Information Processing Systems. Technical
Report., vol. 30.

Klaser, K., Borges, P., Shaw, R., Ranzini, M., Modat, M., Atkinson, D., Thielemans, K.,
Hutton, B., Goh, V., Cook, G., Cardoso, J., Ourselin, S., 2021. A multi-channel
uncertainty-aware multi-resolution network for MR to CT synthesis. Appl. Sci.
(Basel, Switzerland) 11 (4), 1–12. http://dx.doi.org/10.3390/APP11041667, URL
https://pubmed.ncbi.nlm.nih.gov/33763236/.

Kucharsky Hiess, R., Alter, R., Sojoudi, S., Ardekani, B.A., Kuzniecky, R., Pardoe, H.R.,
2015. Corpus Callosum Area and brain volume in autism spectrum disorder:
Quantitative analysis of structural MRI from the ABIDE database. J. Autism Dev.
Disord. 45, http://dx.doi.org/10.1007/s10803-015-2468-8, URL http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/MCFLIRT,.

Leow, A.D., Klunder, A.D., Jack, C.R.B., Toga, A.W., Dale, A.M., Bernstein, M.A.,
Britson, P.J., Gunter, J.L., Ward, C.P., Whitwell, J.L., Borowski, B.J., Fleisher, A.S.,
Fox, N.C., Harvey, D., Kornak, J., Schuff, N., Studholme, C., Alexander, G.E.,
Weiner, M.W., Thompson, P.M., 2007. Longitudinal stability of MRI for mapping
brain change using tensor-based morphometry. URL http://www.loni.ucla.edu/
ADNI.

Martino, A.D., Yan, C.-G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., 2013. The
autism brain imaging data exchange: towards a large-scale evaluation of the
intrinsic brain architecture in autism. Mol. Psychiatry 10, 659–667. http://dx.doi.
org/10.1038/mp.2013.78, URL http://fcp-indi.github.com.

Pérez-García, F., Sparks, R., Ourselin, S., 2020. Torchio: a python library for efficient
loading, preprocessing, augmentation and patch-based sampling of medical images
in deep learning. arXiv:2003.04696.

http://www.fnih.org
https://doi.org/10.1016/j.media.2023.103058
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://arxiv.org/abs/2107.09559
http://dx.doi.org/10.1007/978-3-030-32778-1_11
http://arxiv.org/abs/2001.10767
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb4
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb4
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb4
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb4
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb4
http://dx.doi.org/10.1007/s00247-016-3556-4
http://dx.doi.org/10.1007/s00247-016-3556-4
http://dx.doi.org/10.1007/s00247-016-3556-4
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
http://dx.doi.org/10.5281/zenodo.4323059
http://dx.doi.org/10.5281/zenodo.4323059
http://dx.doi.org/10.5281/zenodo.4323059
https://github.com/Project-MONAI/MONAI
http://dx.doi.org/10.1038/mp.2013.78
http://dx.doi.org/10.1038/mp.2013.78
http://dx.doi.org/10.1038/mp.2013.78
http://fcp-indi.github.com
http://dx.doi.org/10.1007/978-3-030-52791-4_2
http://dx.doi.org/10.1007/978-3-030-52791-4_2
http://dx.doi.org/10.1007/978-3-030-52791-4_2
http://arxiv.org/abs/1806.08640
http://dx.doi.org/10.14336/AD.2017.0502
http://dx.doi.org/10.14336/AD.2017.0502
http://dx.doi.org/10.14336/AD.2017.0502
http://dx.doi.org/10.1016/j.neuroimage.2017.11.024
http://dx.doi.org/10.1016/j.neuroimage.2017.11.024
http://dx.doi.org/10.1016/j.neuroimage.2017.11.024
http://dx.doi.org/10.1101/116541
http://dx.doi.org/10.1101/116541
http://dx.doi.org/10.1101/116541
http://dx.doi.org/10.1016/J.JALZ.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2016.06.192
http://arxiv.org/abs/1506.02142
http://dx.doi.org/10.1007/978-3-030-60365-6_3
http://dx.doi.org/10.1007/978-3-030-60365-6_3
http://dx.doi.org/10.1007/978-3-030-60365-6_3
http://arxiv.org/abs/2009.07573
https://arxiv.org/abs/2009.07573v1
http://dx.doi.org/10.1002/CMR.A.21264
https://onlinelibrary.wiley.com/doi/full/10.1002/cmr.a.21264
https://onlinelibrary.wiley.com/doi/full/10.1002/cmr.a.21264
https://onlinelibrary.wiley.com/doi/full/10.1002/cmr.a.21264
http://dx.doi.org/10.1002/mrm.21542
http://www.interscience.wiley.com
http://dx.doi.org/10.1016/j.neuroimage.2009.03.053
http://dx.doi.org/10.1016/j.neuroimage.2009.03.053
http://dx.doi.org/10.1016/j.neuroimage.2009.03.053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694257/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694257/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694257/
http://dx.doi.org/10.1038/S41568-018-0016-5
http://dx.doi.org/10.1038/S41568-018-0016-5
http://dx.doi.org/10.1038/S41568-018-0016-5
https://pubmed.ncbi.nlm.nih.gov/29777175/
http://arxiv.org/abs/1809.10483
http://dx.doi.org/10.1016/j.media.2015.05.002
http://dx.doi.org/10.1016/j.media.2015.05.002
http://dx.doi.org/10.1016/j.media.2015.05.002
http://dx.doi.org/10.1016/J.NEUROIMAGE.2019.05.033
http://arxiv.org/abs/1901.05992
http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1007/978-3-030-00928-1_54/FIGURES/2
http://arxiv.org/abs/1805.10170
https://link.springer.com/chapter/10.1007/978-3-030-00928-1{_}
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb27
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb27
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb27
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb27
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb27
http://dx.doi.org/10.3390/APP11041667
https://pubmed.ncbi.nlm.nih.gov/33763236/
http://dx.doi.org/10.1007/s10803-015-2468-8
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT,
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://dx.doi.org/10.1038/mp.2013.78
http://dx.doi.org/10.1038/mp.2013.78
http://dx.doi.org/10.1038/mp.2013.78
http://fcp-indi.github.com
http://arxiv.org/abs/2003.04696


Medical Image Analysis 92 (2024) 103058P. Borges et al.
Pham, D.L., Chou, Y.-Y., Dewey, B.E., Reich, D.S., Butman, J.A., Roy, S., 2020.
Contrast adaptive tissue classification by alternating segmentation and synthesis. In:
Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (Eds.), Simulation and Synthesis
in Medical Imaging. Springer International Publishing, Cham, pp. 1–10.

Rooney, W.D., et al., 2007. Magnetic field and tissue dependencies of human brain
longitudinal 1h2o relaxation in vivo. Magn. Reson. Med.: Off. J. Int. Soc. Magn.
Reson. Med. 57 (2), 308–318.

Runge, V.M., Kirsch, J.E., Thomas, G.S., Mugler, J.P., 1991. Clinical comparison
of three-dimensional MP-RAGE and FLASH techniques for MR imaging of the
head. J. Magn. Reson. Imaging 1 (4), 493–500. http://dx.doi.org/10.1002/jmri.
1880010417.

Runge, V.M., Wood, M.L., Kaufman, D.M., Kevin Nelson, M.L., Traill, M.R., 1988.
FLASH: Clinical three-dimensional magnetic resonance imaging. Technical Report..

Sabuncu, M.R., Yeo, B.T., Leemput, K.V., Fischl, B., Golland, P., 2010. A generative
model for image segmentation based on label fusion. IEEE Trans. Med. Imaging 29,
1714–1729. http://dx.doi.org/10.1109/TMI.2010.2050897, URL https://pubmed.
ncbi.nlm.nih.gov/20562040/.

Scahill, R.I., Frost, C., Jenkins, R., Whitwell, J.L., Rossor, M.N., Fox, N.C., 2003.
A longitudinal study of brain volume changes in normal aging using serial
registered magnetic resonance imaging. Arch. Neurol. 60 (7), 989–994. http://
dx.doi.org/10.1001/ARCHNEUR.60.7.989, URL https://jamanetwork.com/journals/
jamaneurology/fullarticle/784396.

Shinohara, X.R.T., Oh, X.J., Nair, X.G., Calabresi, P.A., Davatzikos, X.C., Doshi, X.J.,
Henry, X.R.G., Kim, X.G., Linn, K.A., Papinutto, X.N., Pelletier, X.D., Pham, X.D.L.,
Reich, X.D.S., Rooney, X.W., Roy, X.S., Stern, X.W., Tummala, X.S., Yousuf, X.F.,
Zhu, X.A., Sicotte, X.N.L., Bakshi, X.R., 2017. Volumetric analysis from a har-
monized multisite brain MRI study of a single subject with multiple sclerosis.
http://dx.doi.org/10.3174/ajnr.A5254.

Slattery, C.F., 2019. Clinical and genetic heterogeneity in young onset sporadic
Alzheimer’s disease Doctoral thesis. UCL (University College London).

Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., 2011. Correlations among
brain gray matter volumes, age, gender, and hemisphere in healthy individuals.
PLoS One 6 (7), 22734. http://dx.doi.org/10.1371/journal.pone.0022734, URL
http://www.fmri.wfubmc.edu/download.htm.
19
Tanno, R., Worrall, D.E., Kaden, E., Ghosh, A., Grussu, F., Bizzi, A., Sotiropoulos, S.N.,
Criminisi, A., Alexander, D.C., 2021. Uncertainty modelling in deep learning for
safer neuroimage enhancement: Demonstration in diffusion MRI. NeuroImage 225,
117366. http://dx.doi.org/10.1016/J.NEUROIMAGE.2020.117366.

Varadarajan, D., Bouman, K.L., van der Kouwe, A., Fischl, B., Dalca, A.V., 2021.
Unsupervised learning of MRI tissue properties using MRI physics models. arXiv:
2107.02704, URL http://arxiv.org/abs/2107.02704.

Wang, J., He, L., Zheng, H., Lu, Z.-L., 2014. Optimizing the Magnetization-Prepared
Rapid Gradient-Echo (MP-RAGE) Sequence. Technical Report 5, p. 96899. http:
//dx.doi.org/10.1371/journal.pone.0096899, URL www.plosone.org.

Weiskopf, N., et al., 2013. Quantitative multi-parameter mapping of R1, PD*, MT, and
R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95.

Yasaka, K., Abe, O., 2018. Deep learning and artificial intelligence in radiology: Current
applications and future directions. PLoS Med. 15 (11), e1002707. http://dx.doi.org/
10.1371/JOURNAL.PMED.1002707, URL https://journals.plos.org/plosmedicine/
article?id=10.1371/journal.pmed.1002707.

Yu, H., Yang, L.T., Zhang, Q., Armstrong, D., Deen, M.J., 2021. Convolutional
neural networks for medical image analysis: State-of-the-art, comparisons, improve-
ment and perspectives. Neurocomputing 444, 92–110. http://dx.doi.org/10.1016/
J.NEUCOM.2020.04.157.

Zhang, L., Wang, X., Yang, D., Sanford, T., Harmon, S., Turkbey, B., Wood, B.J.,
Roth, H., Myronenko, A., Xu, D., Xu, Z., 2020. Generalizing deep learning for
medical image segmentation to unseen domains via deep stacked transformation.
IEEE Trans. Med. Imaging 39 (7), 2531–2540. http://dx.doi.org/10.1109/TMI.
2020.2973595.

Zhao, F., Wu, Z., Wang, L., Lin, W., Xia, S., Shen, D., Li, G., 2019. Harmonization
of infant cortical thickness using surface-to-surface cycle-consistent adversarial
networks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 11767 LNCS,
Springer, pp. 475–483.

Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. vol. 2017-October, Institute of Electrical
and Electronics Engineers Inc., pp. 2242–2251, arXiv:1703.10593.

http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb33
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb34
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb34
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb34
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb34
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb34
http://dx.doi.org/10.1002/jmri.1880010417
http://dx.doi.org/10.1002/jmri.1880010417
http://dx.doi.org/10.1002/jmri.1880010417
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb36
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb36
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb36
http://dx.doi.org/10.1109/TMI.2010.2050897
https://pubmed.ncbi.nlm.nih.gov/20562040/
https://pubmed.ncbi.nlm.nih.gov/20562040/
https://pubmed.ncbi.nlm.nih.gov/20562040/
http://dx.doi.org/10.1001/ARCHNEUR.60.7.989
http://dx.doi.org/10.1001/ARCHNEUR.60.7.989
http://dx.doi.org/10.1001/ARCHNEUR.60.7.989
https://jamanetwork.com/journals/jamaneurology/fullarticle/784396
https://jamanetwork.com/journals/jamaneurology/fullarticle/784396
https://jamanetwork.com/journals/jamaneurology/fullarticle/784396
http://dx.doi.org/10.3174/ajnr.A5254
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb40
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb40
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb40
http://dx.doi.org/10.1371/journal.pone.0022734
http://www.fmri.wfubmc.edu/download.htm
http://dx.doi.org/10.1016/J.NEUROIMAGE.2020.117366
http://arxiv.org/abs/2107.02704
http://arxiv.org/abs/2107.02704
http://arxiv.org/abs/2107.02704
http://arxiv.org/abs/2107.02704
http://dx.doi.org/10.1371/journal.pone.0096899
http://dx.doi.org/10.1371/journal.pone.0096899
http://dx.doi.org/10.1371/journal.pone.0096899
http://www.plosone.org
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb45
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb45
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb45
http://dx.doi.org/10.1371/JOURNAL.PMED.1002707
http://dx.doi.org/10.1371/JOURNAL.PMED.1002707
http://dx.doi.org/10.1371/JOURNAL.PMED.1002707
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002707
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002707
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002707
http://dx.doi.org/10.1016/J.NEUCOM.2020.04.157
http://dx.doi.org/10.1016/J.NEUCOM.2020.04.157
http://dx.doi.org/10.1016/J.NEUCOM.2020.04.157
http://dx.doi.org/10.1109/TMI.2020.2973595
http://dx.doi.org/10.1109/TMI.2020.2973595
http://dx.doi.org/10.1109/TMI.2020.2973595
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://refhub.elsevier.com/S1361-8415(23)00318-3/sb49
http://arxiv.org/abs/1703.10593

	Acquisition-invariant brain MRI segmentation with informative uncertainties
	Introduction
	Related works
	Improving model generalisability
	Harmonisation
	Contributions

	Methods
	Framework background
	Major methodological changes overview
	Section summary and introduction
	Network architecture
	Stratification and batch homogeneity
	Casting simulation as an augmentation layer
	Uncertainty modelling
	Epistemic uncertainty
	Aleatoric uncertainty
	Uncertainty quantification


	Experiments and Results
	Section summary
	Data and experimental details
	Data
	Network hyperparameters and training details
	Simulation sequence details
	Results presentation

	Annealing study: Robustness and quality analysis
	Uncertainty measures and volumetric bounds
	Physics-driven multi-site harmonisation
	Reformulating the MPRAGE static equation
	Main proposed models
	Comparison methods
	Segmentation accuracy analysis
	Covariate preservation analysis
	Multi-site harmonisation analysis
	Performance across different scanner types

	Uncertainty-informed sequence optimisation

	Limitations
	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


